Join the POCUS Revolution: Unlock the Power of Point-of-Care Ultrasound

A Hand-held ultrasound device scanning a patient

If you’re a fan of the AIUM (American Institute of Ultrasound in Medicine), then you already understand the importance of ultrasound technology in revolutionizing patient care. However, the emergence of Point-of-Care Ultrasound (POCUS) has taken this technology to new heights. POCUS is transforming the medical landscape, offering a sleek, affordable, and user-friendly solution that brings ultrasound imaging directly to the bedside. In this blog post, we’ll explore the advantages of POCUS over other imaging fields, share statistical data, discuss key POCUS techniques, and invite you to join us at the AIUM’s POCUS Course in Portland, Oregon, sponsored by AIUM and OHSU (Oregon Health & Science University), where you’ll discover the top 5 reasons to attend.

POCUS: Your Trusty Sidekick
POCUS is designed to be there for you when you need it the most, acting as a trusty sidekick to clinicians. With its ability to be performed at the bedside, POCUS delivers real-time answers, confirming diagnoses and guiding procedures without the need for additional appointments or waiting for results.

The Power of POCUS 

Let’s explore some statistical data that demonstrates the effectiveness and widespread adoption of POCUS:

  • Improved Diagnosis Accuracy
    According to a study published in a Royal College of Physicians journal, POCUS improved the accuracy of initial diagnoses compared to physical examination alone in various medical specialties, including emergency medicine, critical care, and primary care.
    Reduced Supplemental Exams
    A research article published in the Journal of Ultrasound in Medicine found that POCUS reduced the need for additional imaging studies and can reduce length of stay and imaging costs in various cases leading to significant cost savings and streamlined patient care pathways.
    Enhanced Patient Outcomes
    A systematic review and meta-analysis published in the Ultrasound Journal demonstrated that POCUS-guided interventions in cardiac patients resulted in improved outcomes, including reduced mortality rates and shorter hospital stays.

Key POCUS Techniques

POCUS encompasses various techniques that aid in diagnosing and guiding procedures. Some of the key techniques include:

  • Focused Cardiac Ultrasound (FOCUS)
    FOCUS allows clinicians to rapidly assess cardiac function, detect pericardial effusions, and evaluate for cardiac abnormalities such as wall motion abnormalities or valvular dysfunction.
  • Lung Ultrasound (LUS)
    LUS is valuable in the assessment of pulmonary conditions, including pneumothorax, pleural effusions, and pulmonary edema. It provides real-time visualization of lung sliding, B-lines, and consolidations.
  • Abdominal Ultrasound
    Abdominal POCUS aids in the evaluation of acute abdominal pain, gallbladder disease, kidney stones, and abdominal aortic aneurysms, among other conditions. It enables quick assessment and intervention in critical situations.
  • Musculoskeletal Ultrasound
    Musculoskeletal POCUS allows for an accurate evaluation of joint effusions, tendon injuries, muscle tears, and other soft tissue abnormalities. It assists in guiding interventions such as joint aspirations and injections.

POCUS is a game-changer, offering real-time answers that confirm diagnoses and guide procedures at the bedside. The statistical data highlights its effectiveness in improving diagnosis accuracy, reducing the need for supplemental exams, and enhancing patient outcomes. Don’t miss your chance to join the POCUS revolution and become a superhero in your own right. Register today for the AIUM’s POCUS Course in Portland, Oregon, and unlock the power of Point-of-Care Ultrasound. It’s time to level up your medical game and make a lasting impact on patient care. Sign up today!

Sources
Smallwood N, Dachsel M. Point-of-care ultrasound (POCUS): unnecessary gadgetry or evidence-based medicine? Clin Med (Lond) 2018; 18(3):219–224. doi: 10.7861/clinmedicine.18-3-219. PMID: 29858431; PMCID: PMC6334078.

Amina Jaji, Rohit S. Loomba. Hocus POCUS! Parental quantification of left-ventricular ejection fraction using point of care ultrasound: Fiction or reality? [published online ahead of print December 30, 2022] Pediatr Cardiol. doi:10.1007/s00246-022-03090-w.

Kasmire KE and Davis J. Emergency department point-of-care ultrasonography can reduce length of stay in pediatric appendicitis: A retrospective review. J Ultrasound Med 2021; 40:2745–2750. https://doi.org/10.1002/jum.15675

Ávila-Reyes D, Acevedo-Cardona AO, Gómez-González JF, Echeverry-Piedrahita DR, Aguirre-Flórez M, Giraldo-Diaconeasa A. Point-of-care ultrasound in cardiorespiratory arrest (POCUS-CA): narrative review article. Ultrasound J 2021; 13(1):46. doi: 10.1186/s13089-021-00248-0. PMID: 34855015; PMCID: PMC8639882.

Arian Tyler, BS, is the Digital Media and Communications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Musculotendinous Ultrasound Imaging Applications in Sports Medicine

There is a clearly established role of ultrasound imaging in traditional medical contexts to optimize patient assessment and subsequent care. These same applications have been carried over into sports medicine settings, especially with recent developments in ultrasound portability. Such technological advancements enable athletic trainers and other sports medicine clinicians to perform sideline assessments for athletes who sustain musculoskeletal injuries during sports.

Beyond diagnostic applications of ultrasound imaging, sports medicine clinicians and researchers have begun to adopt this tool as a creative means to assess musculotendinous structures in response to sport and exercise. Ultrasound imaging has advantages over other measurement techniques given that it is relatively inexpensive equipment, fairly easy to operate (especially if you know your anatomy!), and can be rapidly implemented into assessments. Ultrasound imaging also enables clinicians to perform more dynamic assessments with patients to understand functional movement patterns, and noninvasively examine deeper tissue structures. The real-time visual platform uniquely provides the opportunity to enhance patient-clinician dialogue and provide feedback to target key muscle groups during fundamental exercises.

Below, several exemplary studies that leverage ultrasound imaging in musculotendinous contexts are presented to convey the depth and breadth of innovation in the sports medicine field and highlight opportunities for future ultrasound implementation into practice.

Muscle Morphology

Ultrasound has been most frequently implemented in sports medicine research to conduct table-top assessments of musculotendinous structures. This measurement approach provides insights to clinicians on patients’ muscle and tendon changes in response to exercise (eg, weight- and height-adjusted size, fiber arrangement and quality). For example, researchers have been able to examine lower limb musculotendinous responses across long-distance running training.1,2 Beyond training adaptations, clinicians are also able to get some insights into structural tissue changes in the presence of current or future musculoskeletal injury. This has specifically been done to examine musculotendinous adaptations at the shoulder complex,3 foot complex,4 and lumbopelvic hip complex5 across a range of pathological populations. Preliminary work has begun to identify signals in tendon tissue quality that relate to future pain in running athletes.1 Such studies will continue to help inform rehabilitative and training interventions to improve muscle and tendon quality to move toward injury risk reduction in sports medicine.

Dynamic Muscle Function

In addition to the role of ultrasound imaging in more static imaging contexts, ultrasound has been implemented in sports medicine research in more functional contexts. Researchers have inventively started to use foam blocks with Velcro elastic belts to secure portable ultrasound probes on patients to visualize deep lumbopelvic hip muscles across a range of exercises and movements to assess the role of these muscles during fundamental movements (Figure).6 Through this approach, researchers have examined athletes’ transverse abdominis muscle thickness during an abdominal draw-in maneuver across patient positions to determine which activity elicited the most “bang for your buck” in muscle activity.7 Additionally, this measurement approach has been used to assess gluteal muscle function throughout treadmill walking. In these instances, ultrasound videos were obtained to quantify muscle activity throughout movement and identify activity dysfunction among patients with lower limb injuries.8,9 These examples emphasize the utility of ultrasound imaging to supplement typical sports medicine clinical assessments and underscore the opportunity for clinicians to implement ultrasound imaging in more dynamic assessments.

An athlete with ultrasound probes attached to her leg. A screen in the fore ground shows the ultrasound image.

Real-time Feedback

Ultrasound imaging demonstrates great promise as a rehabilitative feedback tool for patients who have difficulty recruiting specific muscle groups as a result of injury.10 The most robust use of ultrasound for feedback has been taking dynamic assessments of the lumbopelvic hip complex muscles a step further and using ultrasound to allow patients to visualize their muscles during abdominal contraction exercises. In this manner, clinicians have been able to show patients their muscle activity, and encourage activation of select muscles during rehabilitative exercises. This approach has been found to be more successful for patient neuromuscular education than other feedback approaches, such as verbal encouragement. The visual interface not only helps patients to see and understand muscle recruitment in real time but also helps clinicians to see when patients are able to activate proper stabilizing muscle groups as opposed to “cheating” on an exercise and using global movers to achieve a movement. While there is less available information on the use of ultrasound for feedback for targeting other muscle groups during rehabilitation, these studies highlight the opportunities for ultrasound imaging to maximize patient benefit during clinical interventions.

The Future of Ultrasound in Sports Medicine

Ultrasound imaging can clearly play a key role in sports medicine assessments and interventions. Continued research is necessary to broaden our understanding of musculotendinous changes in relation to sports injuries and rehabilitation, as current research is still scraping the surface of ultrasound opportunities in sports. Ultrasound assessments may complement other forms of athlete assessments and provide more in-depth insights into muscle and tendon function in relation to performance and injury. It is plausible that with continued technological advancements and the miniaturization of ultrasound units, clinicians may be able to use imaging during more sport-specific activities at higher velocities to unearth real-time musculotendinous changes in physical activity. The prospects of ultrasound are promising, and this tool may continue to revolutionize patient care in sports medicine clinics.

References

  1. Cushman DM, Petrin Z, Eby S, et al. Ultrasound evaluation of the patellar tendon and Achilles tendon and its association with future pain in distance runners. Phys Sportsmed. 2021; 49:410–419. doi:10.1080/00913847.2020.1847004.
  2. DeJong Lempke AF, Willwerth SB, Hunt DL, Meehan III WP, Whitney KE. Adolescent marathon training: prospective evaluation of musculotendinous changes during a 6-month endurance running program [published online ahead of print September 29, 2022]. J Ultrasound Med. doi:10.1002/jum.16105.
  3. Thomas SJ, Blubello A, Peterson A, et al. Master swimmers with shoulder pain and disability have altered functional and structural measures [published online ahead of print April 13, 2021]. J Athl Train. doi:10.4085/1062-6050-0067.21.
  4. Fraser JJ, Koldenhoven R, Hertel J. Ultrasound measures of intrinsic foot muscle size and activation following lateral ankle sprain and chronic ankle instability. J Sport Rehabil 2021; 30:1008–1018. doi:10.1123/jsr.2020-0372.
  5. Dieterich AV, Deshon L, Strauss GR, McKay J, Pickard CM. M-Mode ultrasound reveals earlier gluteus minimus activity in individuals with chronic hip pain during a step-down task. J Orthop Sports Phys Ther 2016; 46:277–285. doi:10.2519/jospt.2016.6132.
  6. DeJong AF, Mangum LC, Hertel J. Ultrasound imaging of the gluteal muscles during the Y-balance test in individuals with and without chronic ankle instability. J Athl Train 2019; 55:49–57. doi:10.4085/1062-6050-363-18.
  7. Mangum LC, Henderson K, Murray KP, Saliba SA. Ultrasound assessment of the transverse abdominis during functional movement: Transverse abdominis during movement. J Ultrasound Med 2018; 37:1225–1231. doi:10.1002/jum.14466.
  8. DeJong AF, Mangum LC, Hertel J. Gluteus medius activity during gait is altered in individuals with chronic ankle instability: An ultrasound imaging study. Gait Posture 2019; 71:7–13. doi:10.1016/j.gaitpost.2019.04.007.
  9. DeJong AF, Koldenhoven RM, Hart JM, Hertel J. Gluteus medius dysfunction in females with chronic ankle instability is consistent at different walking speeds. Clin Biomech (Bristol, Avon). 2020; 73:140–148. doi:10.1016/j.clinbiomech.2020.01.013.
  10. Valera-Calero JA, Fernández-de-Las-Peñas C, Varol U, Ortega-Santiago R, Gallego-Sendarrubias GM, Arias-Buría JL. Ultrasound imaging as a visual biofeedback tool in rehabilitation: An updated systematic review. Int J Environ Res Public Health. 2021; 18(14):7554. doi:10.3390/ijerph18147554.

Alexandra F. DeJong Lempke, PhD, ATC, is a clinical assistant professor of Applied Exercise Science, co-director of the Michigan Performance Research Lab, and a member of the Exercise & Sport Science Initiative within the U-M School of Kinesiology.

Interested in reading more about MSK ultrasound? Check out these posts from the Scan:

What Rheumatologists Really Need for Ultrasound Is…

After I graduated from a Rheumatology fellowship, I was invited to stay on as junior faculty and several years thereafter the ACR (that acronym stands for American College of Rheumatology – I have no idea why most people who are into ultrasound always think it means something else…) developed an educational initiative aimed at bringing MSK US to every Rheumatology training program in the USA.

The ACR began to invite about 20 training programs per year to nominate one faculty member whose journey through the Ultrasound School of North American Rheumatologists (USSONAR) would be subsidized by the College. The idea was that each USSONAR graduate would then start an MSK US training program at his or her home institution, and since there are only about 120 Rheumatology training programs in the USA, the whole process would only take about 6 years. The rate of adoption among training programs was of course not 100%, and there are several key barriers to the development of an ultrasound training program, but at our institution it worked.

I’ve been doing point-of-care MSK ultrasound ever since I completed USSONAR and passed my certification exams, and our institution now has a required half-day MSK ultrasound clinic in which every Rheumatology fellow spends 6 months as part of their required curriculum. While MSK US certification is not required for graduation or to sit for boards, I’m proud to say that so far three of our Rheumatology graduates have opted to sit for the exam and are now ultrasound certified.

The program has been in place for about 7 years now, so it seems a good time to begin reflecting on my impressions of how MSK US fits into a Rheumatology practice, and more importantly some of the ways in which the current off-the-shelf technology doesn’t fully meet our specialty’s needs.

Clearly, MSK US is a major boon to Rheumatology in terms of needle guidance. Our half-day ultrasound clinic has made it possible for us to stop referring hip injections out to Interventional Radiology or Anesthesia-Pain, and I’m hoping that we will soon be able to bring sacroiliac joint injections back in-house as well. Diagnostically, the most common reason a patient is referred to the ultrasound clinic is for disambiguation of the borderline / nebulous case—that patient who endorses symptoms that sound like active inflammation but whose physical exam is benign. Our most common diagnostic referral is to answer the question of whether or not subclinical synovitis is present in the small joints of the hands, and that leads us to the first instance of current MSK US technology being less than a seamless integration into clinical practice and more of a square peg being jammed into a round hole.

The soft tissues associated with the small joints of the hands are at very shallow depths, usually under 1 cm in most patients. My very first ultrasound machine was a SonoSite M-MSK, and you adjusted the depth with a pair of pushbuttons. The standard procedure (and I would teach the fellows exactly this) was to start up the machine and then just start tapping the “less depth” button over and over.

Image of a finger joint with a ruler indicating the small height of the joint  is less than 2 centimeters.

“Just keep tapping,” I would tell the fellow. “Tap it like you’re playing Space Invaders, and just keep hitting it until the machine starts beeping in protest because the minimum depth has been reached.”

Even at that minimum setting, most ultrasound machines still show a depth of about 2 cm. I often joke with the fellows that this setting would be wonderful if we were trying to look clear through the patient’s hand and figure out what material the cushion on the exam table was made of!

Astute readers will also realize that no matter what the depth on the machine is set to, this puts the target structure (again, usually at a depth of 0.5–1 cm) closer to the probe face than the optimal focal zone distance on many probes—we are giving ourselves a case of technological hyperopia.

A stand-off pad will help keep the tissue at a better focal distance, but these pads can be cumbersome and will make the learning curve for any fellow even steeper than it already is by virtue of obscuring the tactile input, which is integral to the hands-on nature of point-of-care sonography. Ultrasound doesn’t feel like a natural extension of the physical exam with a stand-off pad in the way.

The real solution here is to switch to ultra-high-frequency ultrasound, something in the 50–70 MHz range, where the depth bar at the edge of the monitor is labeled in millimeters instead of centimeters. For small joints, I think this has to be the future of MSK ultrasound. This is why I was interested in the AIUM’s Community on High Frequency Clinical and Preclinical Imaging, and ultimately volunteered to serve among its leadership. Sadly, these UHF machines are expensive and they are often purpose-built for ultra-high-frequency only, meaning that a top of the line Rheumatologic MSK US clinic would need to own two machines, one UHF and one standard.  

This won’t fly in most places.

One of the main reasons why the ACR’s vision for an MSK US curriculum in every Rheumatology training program has not been fully realized is the expense involved in acquiring even one machine.

When we are looking at the hands of that patient whose clinical presentation is ambiguous—whose symptoms don’t seem to match their physical exam and in whom occult synovitis is suspected—we are looking for three telltale sonographic signs of the ravages of inflammation: hypertrophy of the synovium, the presence of a joint effusion, and hyperemia from the irritated joint lining struggling to summon blood flow to meet its elevated metabolic demands. The first two are often lumped together under the umbrella of “grayscale findings,” and the hyperemia is of course measured by Doppler.

The second hurdle for MSK US in the field of Rheumatology, then, is that of Doppler sensitivity. We are trying to examine and even semi-quantify the blood flow in capillaries, using equipment designed to measure the jets from regurgitant heart valves. Power Doppler is helpful here, due to its independence from the angle of insonation, but again we end up playing every trick in the book (starting with turning the wall filter off completely, if the machine even allows it) trying to squeeze every iota of signal out of the noise.

I always start the hand exam with a calibration image, in which I capture the blood flow in the pulp of a fingertip. Sometimes, especially in the midst of Chicago winters, you can’t even tell the Doppler is on at all. Currently, there’s nothing to do in that situation other than to comment in the report that Doppler calibration failed and thus the sensitivity of the study for detecting active synovitis (the very thing for which the study was ordered) is significantly compromised.

Taken together, it would seem that perhaps what we really need is for manufacturers to go beyond a blanket “MSK” setting in their machines and offer a true “Rheum” optimization package.

Dr. Mandelin is an academic rheumatologist, registered in MSK ultrasound (RhMSUS) by the American College of Rheumatology and certified in MSK ultrasound (RMSK) by the Alliance for Physician Certification & Advancement. He currently serves the AIUM as secretary of the High Frequency Clinical and Preclinical Imaging Community.

Where do you think MSK ultrasound is headed? Rheumatologists, where else does the technology not quite work in terms of your practice? Comment below or join in the conversation on Twitter, where my handle is @NU_Rheum_MSK_US.

Interested in learning more from the Scan? Check out the following posts:

Hey, Ultrasound! What Did I Do Without You?

I trained as a physiatrist, which means a great deal of education on musculoskeletal conditions. Over the course of my residency training, I became more and more comfortable with bony and soft tissue landmarks for examination and targeting various joints, nerves, and tendons for therapeutic injections. As I was supervised by attendings, and carefully followed their instructions, there was no doubt in my mind that the tip of my needle was at the target intended. Why would I doubt a common practice that has been in existence for several decades?Mostoufi

As I started my fellowship in spine/pain/musculoskeletal care, I found the love of my life, the fluoroscope!!  Here, I had access to a tool that made life incredibly easy. I actually could visualize my targeted hip, shoulder, or facet joint, and inject some contrast to identify the needle tip within my target. I could precisely deliver therapeutic medications to a particular nerve root, and even identify vascular uptake and avoid procedural complications.

It was then and there that I realized that there were substantial shortcomings in what I learned as “landmark-based injections”. I realized that even though I had learned the proper “blind” procedure technique, there was no confirmation that my medication had reached its intended target. More importantly, if my patient did not respond to the procedure, I could not differentiate between a medical condition that was not responsive to the treatment versus shortcomings of un-guided procedures and inadequate delivery of medications to the targeted tissue/joint. For 12 years, I confidently treated thousands of patients by performing spine and musculoskeletal injections using my fluoroscope. I enjoyed using my C-arm, and life was pretty good.

In 2011, while attending a PM&R national conference, I sat through a 15-minute presentation on overdiagnosis of trochanteric bursitis. The speaker eloquently described fluoroscopic-guided bursa injection. This was something that I did on a regular basis as a diagnostic step. He then used ultrasound (US) images to demonstrate a few cases of gluteus medius tendinopathy and also trochanteric bursitis and how US can be superior to X-ray in therapeutic sub-gluteus maximus bursa injection. While sitting and listening, I recognized that it was virtually impossible to press against the lateral trochanter and be accurate about the diagnosis. It is also not possible to use fluoroscopy and be sure that the steroid or regenerative treatments are correctly delivered to sub-gluteus maximus bursa.

Remembering how helpful fluoroscope was to identify particular bony landmarks and assist with the proper treatment of spine and joint disease, here I was discovering a new tool that can enhance diagnostic and therapeutic skills in musculoskeletal care in particular soft tissue disease (nerves, muscles, tendons). This meant a fundamental change in the way I was going to treat patients but also a change in how I train the next generations of Physiatrists, coming through our residency program.

Fig 3aFig 3b

Learning to use the US, and incorporating it into the practice was much harder than I envisioned and also very expensive. At the time, there were limited well-structured educational resources available, and the learning curve was quite steep. As I was learning, I had to beg (or pay) my kids to become my scanning subjects!!

In contrast to a fluoroscope, it is nearly impossible to recognize an abnormal structure on the US unless you are comfortable with the normal anatomy. With a ton of hands-on workshops, mentorship, practice, and with assistance from my new found love of ultrasound machine, and guidelines from the AIUM, ultrasound has become easier and more enjoyable!! The abnormal findings became more clear and treatments more effective. In this process, I found out that patients enjoy looking at the US screen and being explained about finding on a screen full of gray, gray, and grayer lines and curves.

US has transformed how physiatrists practice and teach musculoskeletal medicine. Point-of-care US imaging allows for the residents and fellows to visualize various organs or structures within an organ, recognize healthy and diseased tissue, and diagnose the problem on the spot. This, in turn, will lead to a quick and targeted treatment and satisfied patients.

Examples of musculoskeletal (MSK) conditions that US has proven to be an effective tool to workup or treat includes rotator cuff and biceps tendinopathy, small or large joint injections, upper extremity nerve entrapments, muscle and tendon tears, peripheral nerve lesions, carpal tunnel syndrome (CTS), intersection syndromes, trigger fingers, plantar fasciitis, piriformis and sciatic complaints, treatments of bursitis or tenosynovitis, iliotibial  (IT) band treatment, ischiofemoral impingement, and many diagnoses for which dynamic testing proves to be beneficial.

Fig 6

Despite its cost and extensive training/certification needs, utilization of US in MSK care is predicted to be a standard of care in the next 5–10 years. As more and more practitioners are trained, its use for diagnostic or therapeutic purposes will become the norm.

Fig 7aFig 7b

I still love my fluoroscope and prefer its use in most spine procedures. Adding US has revolutionized my practice and allows me to be a better diagnostician, a better MSK doctor and a better educator for both my patients as well as future providers that come after me. In short, US has been a game-changer.

 

Ali Mostoufi, MD, FAAPMR, FAAPM, is an Assistant Prof. in PM&R at Tufts University, and the president of New England Spine Care Associates (NeSpineCare.com) and Boston Regenerative Medicine (BostonRegen.com).  As a spine and sports medicine practitioner, his clinical practice focuses on Interventional Spine, Diagnostic US, US-based therapeutic interventions and Regenerative Medicine in spine and sports.

Interested in reading more about musculoskeletal ultrasound? Check out the following posts from the Scan:

 

Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community to share your experience.

https://connect.aium.org/home

 

Ultrasound in Orthopedic Practice

Point-of-care ultrasound brings great value to patient care in orthopedic practice, especially for soft tissue problems. It offers safe, cost-effective, and real-time evaluation for soft tissue pathologies and helps narrow down the differential diagnosis.Pic1

There are a variety of soft tissue lesions in orthopedic practice with a classic clinical presentation that may not necessitate ultrasound examination for confirmation of diagnosis, for example, ganglion cyst. However, there is value in performing an ultrasound scan for these common soft tissue lesions.

Ganglion cyst on the dorsum of the wrist or radial-volar aspect of the wrist are confirmed based on clinical examination and presentation. Adding ultrasound examination can help differentiate classic ganglion cyst from some rare findings like Lipoma, anomalous muscles, or soft tissue tumors. Ultrasound examination may also be helpful in finding the source of the ganglion cyst or the stalk of the ganglion cyst. This can help pre-surgical planning if resection of the ganglion cyst is desired by the patient and recommended by the surgeon, because arthroscopic or traditional surgical approach may be needed based on the location of the stalk or neck of the cyst.

Images 1 and 2 show examples of two different patients with a similar presentation of slow-growing mass on the digit. Image 1 from patient 1 shows a solid tumor overlying the flexor tendons of the digit, where the mass was palpated. Image 2 from patient 2, shows a cystic mass overlying the tendons of the digit. In both of the cases, masses were painless and slow growing with minimal to no discomfort. Ultrasound is a great tool in differentiating solid vs cystic lesions and can help avoid attempted aspiration of a solid mass when the mass is presented in an area of classic ganglion cyst’s usual presentation.

Another soft tissue problem, where ultrasound is a superior imaging tool is tendon pathology. Ultrasound can help differentiate tendinosis, tenosynovitis, or tendon tears.

In tenosynovitis, tendon by itself shows normal echotexture and uniform appearance but the tenosynovium that surrounds the tendon gets inflamed and appears as hypoechoic halo around the tendon, for example, in image 3, tendons of the first dorsal compartment of the wrist show uniform thickness and fibrillar echotexture, however there is hypoechoic swelling around the tendons, this is an example of tenosynovitis of first dorsal compartment of the wrist.

In tendinosis, tendon loses its fibrillar pattern and appears swollen and may show vascularity on color ultrasound, which is suggestive of neoangiogenesis or angiofibroblastic proliferation. For example, in Image 4, the tendons of the first dorsal compartment of the wrist show focal enlargement, hypoechoic swelling, and loss of normal fibrillar echotexture and tendon appears disorganized with evidence of increased vascularity on color ultrasound. This is an example of tendinopathy or tendinosis.

Focal tendon tears appear as anechoic or hypoechoic focal defects in tendon substance. Image 5 shows a partial tear of the triceps tendon from the olecranon process. The partial tear appears as a focal hypoechoic defect in the tendon, which is confirmed in the long and short axis scan of the tendon.

In full-thickness tears, the tendon is seen retracted proximally with no fiber attachment at the tendon footprint. Image 6 shows an example of a full thickness complete tear of the supraspinatus tendon from its bony attachment at the greater tubercle. The tendon has retracted proximally and the retracted stump is not visible on ultrasound examination.

Image 6

Point-of-care ultrasound adds significant value to clinical examination in an orthopedic setting. It enhances the understanding of a patient’s problem, increases confidence in the care provided, and high patient satisfaction is reported.

In what unexpected ways do you find ultrasound to be useful? Do you have additional tips for using ultrasound in orthopedics?  Comment below or let us know on Twitter: @AIUM_Ultrasound.

Mohini Rawat, DPT, MS, ECS, OCS, RMSK, is program director of Fellowship in Musculoskeletal Ultrasonography at Hands On Diagnostics and owner of Acumen Diagnostics. She is ABPTS Board-Certified in Clinical Electrophysiology; ABPTS Board-Certified in Orthopedics; registered in Musculoskeletal Sonography, APCA; and has an added Point-of-Care MSK Soft Tissue Clinical Certificate.