Why Have UltraCon FOMO When You Can Be a Part of the Transformation of Medical Ultrasound?

Are you still on the fence about deciding whether or not to attend UltraCon, a reimagined take on the American Institute of Ultrasound in Medicine’s annual meeting? The transformation of the AIUM’s annual ultrasound meeting into UltraCon is an exciting step forward for the field. It will provide a platform to connect professionals, share ideas, and learn from each other. 

Previously, we’ve highlighted the benefits of attending Day 1 and Day 2 of UltraCon, but what about Day 3? Just one look at the UltraCon schedule, and you can tell that this is going to be its busiest day yet! Despite the jam-packed program, there are a ton of amazing professional development opportunities ready for you to explore. On Tuesday, four new symposia will kick off, covering topics from 3D/4D imaging to musculoskeletal sonography. There’s also a shark tank competition, an e-poster kiosk hall, the annual AIUM Awards session, and don’t forget about the William J. Fry Memorial Lecture. 

Let’s dive into the first new symposia, Early Pregnancy Ultrasound: Implications and Impacts on Care. This TED-talk-style forum is a great resource for learning about critical issues in the first trimester, such as providing equitable care in the emergency department and managing life-threatening situations. It has not only valuable information for medical professionals but also provides important insight into how to support patients after Dobbs. Participants can earn up to 1.5 CMEs.

Next, we have Optimizing Outcomes in Prenatal Imaging. During this symposia, participants can increase the quality and patient experience in obstetric imaging with a multidisciplinary approach. A group of specialists will present TED talks on topics such as early trimester issues, health inequities, and maternal/fetal life-threatening situations. Improve imaging outcomes via a perception bias workshop, challenging cases, and using the 3D world to understand ultrasound. Plus, roundtables with industry on image optimization and a special session on understanding the lifecycle of prenatal imaging. Participants can earn up to 3.0 CMEs.

POCUS: Cutting-Edge Uses and Controversies is the third symposium of Day 3. Point-of-care ultrasound (POCUS) is revolutionizing the way clinicians diagnose and treat patients. By providing real-time insights, POCUS offers quick, accurate, and cost-effective diagnosis of clinical problems. From development to bedside, POCUS has changed the game for clinicians worldwide. Are you seeking an engaging and informative symposium to discuss current POCUS advancements in medical ultrasound? Look no further than POCUS: Cutting-Edge Uses and Controversies symposium, which discusses topics such as global health, first-trimester concerns, scan ownership, POCUS workflow, and more. With an array of activities, including lectures, panel discussions, and workshops, this is sure to be a stimulating symposium that will leave you informed and inspired.

Breaking the Sound Barrier: Shaping the Future of Ultrasound is the last symposium of the day. The highly interactive symposium on ultrasound technologies is a great opportunity for clinicians, technologists, researchers, industry, and other stakeholders to learn about the latest advancements in ultrasound technology. This symposium will provide an invaluable platform for experts to share their knowledge and insights on how to utilize ultrasound techniques in clinical settings effectively. Attendees will have a chance to interact with leading professionals from around the world and discuss potential solutions for existing challenges within this field.

Outside of attending the symposia, there are several other interactive activities for participants to engage in. Firstly, the AIUM supports an ePoster program every year where attendees can explore and learn at their own pace through self-guided exploration. Secondly, attendees who have a great ultrasound idea and want to pitch it to industry can submit an application to pitch their ideas to venture capitalists, leaders from the industry, and an IP attorney, for the chance to win a cash prize of $1,000. Lastly, don’t forget to attend the 2023 William J. Fry Lecture given by pioneer in gynecologic ultrasound, Dr. Steven R. Goldstein, entitled “Do You Do POCUS: Why reinvent the wheel?”.  

UltraCon will be the must-attend event of the year for medical professionals who want to stay up-to-date on the latest advancements in ultrasound technology. With a wide variety of engaging sessions and workshops, there’s something for everyone, so avoid getting caught with FOMO. All of this is just what is available on the third day of symposia at UltraCon. Check out the Full Schedule to start planning out your UltraCon journey.

Arian Tyler, BS, is the Digital Media and Communications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Optimize Screening of the Fetal Heart

The keys to optimizing screening of the fetal heart are to understand how the ultrasound machine’s functions and controls can affect your image, utilize the entire maternal abdomen, adjust your image presets, and optimize your angle of insonation. So how do you do all that?

You start with the transducer. Be sure to select a transducer that allows for adequate penetration and optimal resolution. All transducers have different operating frequencies and capabilities; high frequencies produce better detail resolution but, of course, with limited sound penetration. These frequencies can be applied in all trimesters, particularly since the advent of high-resolution transducers, which are helpful when imaging delicate heart structures, such as the valves and vessel walls. If, however, the imaging is subpar with a high-frequency transducer, switch to a low-frequency transducer, which is more useful in your patients with a high body mass, in the late second trimester, in the third trimester, and in the event that there is also polyhydramnios syndrome, even when there is rib shadowing. Keep in mind too, that transvaginal imaging is helpful for evaluating the fetal heart in the first or early second trimester, in the event that there is suspected fetal cardiac abnormality, and even when maternal body habitus causes imaging to be difficult.

For your next step, adjust your image presets to optimize your temporal resolution so that you maintain a high frame rate of greater than 25 frames per second. A few of the technical settings that affect temporal resolution are the frame rate (in Hz), frequency selection, depth & focus, sector angle width, and zoom magnification. The better the temporal resolution, the improved detail resolution. To optimize your image, avoid unnecessary depth and make sure your focus is on the region of interest. A multiple focal zone may be applied to structures that don’t move, such as the placenta, but when looking at the 4-chamber heart, you will need a single focal zone. In addition, adjust your sector angle width. Reducing it increases lateral line density, which improves the image quality. Finally, make small adjustments to your settings, such as applying speckle-reduction imaging, adjusting the dynamic range (more or less gray), and scanning in different tones.

When incorporating color Doppler, the color box, color gain, wall motion filter, velocity scale/pulse repetition frequency (PRF), balance, and angle of insolation can each affect the image. The color box slows the frame rate by a significant degree so the smaller the color box, the higher the frame rate. Set color gain initially on low (ie, less color) and gradually increase it until you have optimized the amount of color. The wall motion filter eliminates signals caused by wall motion and low velocities. The velocity scale is the range of mean velocities or PRF in the region of interest. If it is too low, it can produce aliasing, which could lead to a misdiagnosis; too high and the low-velocity flow will not be displayed. Here is a sample of potential ideal velocity flows:

High-velocity flow (>60–80 cm/sec)Low-velocity flow (<30 cm/sec)
Atrioventricular valvesPulmonary veins
Semilunar valvesBicaval (IVC/SVC)
The great vessels (3VV)Evaluating atrial and ventricular septum
The scale is dependent on factors such as body mass index and fetal positioning within the uterus.

The balance allows you to display how much grayscale and color Doppler information you would like to see. Reducing the balance will show grayscale elements within the color box. And, finally, the angle of insonation is very important to keep in mind as the signal from the transducer should be parallel to the direction of blood flow.

J of Ultrasound Medicine, Volume: 35, Issue: 1, Pages: 183-188, First published: 01 January 2016, DOI: (10.7863/ultra.15.02036)

One of the major challenges in ultrasound imaging is scanning a morbidly obese patient. This is a result of the increased distance between the transducer and fetal anatomy, causing degraded resolution. Some techniques for optimizing your imaging in these cases include scanning above the tissue, when the patient’s bladder is full, through the umbilicus, or when the patient is in the Sim’s position (with the patient on their left side), which allows the extra tissue to fall to the left side. Also, keep in mind that when scanning an obese patient, the color doesn’t always fill in. Lowering the color attenuation can help clarify the image.

So, remember, the key to optimizing your fetal heart imaging is in understanding your machines’ functions and controls and how they can affect your image, utilizing the entire maternal abdomen, adjusting your image presets, and optimizing your angle of insonation!

To learn more and see case scenarios, see the American Institute of Ultrasound in Medicine’s (AIUM’s) on-demand webinar with speaker Mishella Perez, MS, RDMS, RDCS, “Fetal Heart Image Optimization: The Key to Screening”, from which this post was adapted. AIUM members can access the webinar for free.

Interested in learning more about fetal imaging? Check out the following resources from the American Institute of Ultrasound in Medicine (AIUM):

O-RADS: Standardizing the way we assess adnexal lesions (and an app to make it easy!)

“When a word has many meanings, it has no meaning at all”. (Anonymous)

Let’s face it: ovarian lesions seen on ultrasound can be some of the most challenging to assess and describe. When not a simple cyst, generic terms such as “complex” are commonly used providing limited insight to the provider and patient regarding the level of concern for risk of malignancy. For instance, shown here are 3 different lesions that could all be described as “complex” or “heterogeneous”, yet range from nonneoplastic to malignant.

Figure 1. Hemorrhagic cyst
Figure 2. Benign dermoid cyst
Figure 3. Endometriod carcinoma

Compound the ambiguity of nonspecific descriptors in the imaging report with the angst of possibly missing an ovarian cancer, a rare but deadly disease, and the result is “over treatment”. Too often, surgery or additional imaging are performed for physiologic and benign findings with the added unintended consequences of associated morbidity and patient anxiety.

Enter O-RADS, an acronym for the Ovarian/Adnexal Reporting and Data System.

Similar to other American College of Radiology (ACR) “RADS” systems (ie, BI-RADS for breast imaging), O-RADS gets everyone speaking the same language AND provides a risk of malignancy using a numeric scale of 0 to 5 (Table 1).

Table 1. Risk of malignancy (ROM) associated with O-RADS Risk Stratification and Scoring System for US and MRI. (NOTE: US systems allow for greater sensitivity at the expense of specificity to avoid not missing a cancer.)

In O-RADS, there are two arms: 1) ultrasound (US), the primary imaging modality for the adnexa used by practitioners from many disciplines; and 2) magnetic resonance imaging (MRI), considered a problem-solving tool for radiologists. With O-RADS ultrasound, management guidance is also provided on triaging lesions to follow-up (clinical or imaging surveillance), additional characterization (by a specialist in US or with an MRI exam), or surgery. For the latter group, this is further divided into those lesions that can be excised by a general gynecologist, and those best managed by a gynecologic-oncologist, an important factor in improving long-term survival in the setting of ovarian malignancy.

Using the available descriptors in the O-RADS lexicon and an algorithmic approach, characterizing adnexal lesions is simplified. First, determine whether a finding in a menstruating patient meets criteria for a physiologic finding (follicle or corpus luteum). If it does not, or the patient is postmenopausal, assess for a “classic benign lesion”, a phrase coined for fairly common lesions that are almost certainly benign when typical features are seen (hemorrhagic cyst, endometrioma, dermoid cyst, paraovarian cyst, hydrosalpinx or peritoneal inclusion cyst). The remainder of lesions are assigned to 1 of 5 categories based on their solid or cystic appearance, and if cystic, the presence of septations and solid components as follows: solid lesion, unilocular cystic ± solid component(s), multilocular cystic ± solid component(s). Subsequently, features such as degree of internal vascularity, lesion size, ascites, and peritoneal nodules may come into play.

To score a lesion, color-coded O-RADS risk stratification tables are readily available and a useful resource. I personally find the O-RADS smartphone app to be an efficient and handy tool to quickly obtain a score and management recommendations. On average, I can reach a score in under 30 seconds and all the information I need for the imaging report is literally at my fingertips.

Since we started using O-RADS, our referring clinicians are asking for an O-RADS score whenever we describe an adnexal lesion as it gives them so much more useful information to counsel their patients. For instance, the patient in figure 1 with a hemorrhagic cyst did not require any imaging follow-up, the patient in figure 2 with a dermoid cyst has safely elected to undergo US surveillance in 1 year, and the patient in figure 3 with endometrioid cancer is doing well under the care of her gynecologic-oncologist.

For me, replacing vague terms (with many meanings) with standardized reporting systems not only makes sense, it’s truly meaningful.

Additional resources:

Dr. Lori Strachowski is a Clinical Professor of Radiology at the University of California, San Francisco, where she holds an adjunct title in the department of Obstetrics, Gynecology and Reproductive Sciences. She is a member of the ACR O-RADS committee serving on the steering committee and chairs the education committee for O-RADS US.

Ultrasound-Guided Obstetric and Gynecologic Procedures in the Pelvis

Ultrasound guidance can be a safe and effective technique in obstetric and gynecologic procedures. Before beginning such a procedure, consider which approach will you take, transabdominal, transgluteal, or transvaginal. The approach that uses the shortest distance to the area of interest without transversing other structures is usually the best tolerated by the patient and will rarely result in complications, which are uncommon and usually minor, such as pain or self-limited bleeding. To select the shortest and safest path for access, review prior cross-sectional imaging and determine it on a case-by-case basis.

In cases of fluid management, such as benign adnexal cyst or peritoneal inclusion cyst fluid collection, note that you may need a larger needle gauge (18+) in those instances in which the fluid is thick. If you intend to test for malignancy, also take into account that fluid is generally less likely than solid tissue to give up the cells needed for a diagnosis.

Fine-needle aspiration in a case with mixed cyst and solid mass.

Ultrasound guidance can also enable delivery of vascular acting medications directly where it is needed, as well as to guide direct gestation sac injection of potassium chloride (KCl) and/or methotrexate for cervical, interstitial, or C-section ectopic or heterotopic pregnancies in appropriate patients.

In conclusion, transvaginal or percutaneous ultrasound guidance can be used in the search for a diagnosis, in fluid collections, and to treat obstetric and gynecologic pathology, such as delivering medications to treat ectopic pregnancy or vascular conditions in select cases.

To learn more about this topic and see examples of its use, watch the full on-demand webinar, “Ultrasound-Guided Interventions to Treat Obstetric and Gynecologic Disease” presented by Tara A. Morgan, MD. Members of the American Institute of Ultrasound in Medicine can access it for free. Join today!

Read more from Tara A. Morgan, MD, on ultrasound guidance in the Journal of Ultrasound in Medicine:

Getting Sonography Students Hands-on Experience

As the Program Director of a Commission on Accreditation of Allied Health Education Programs (CAAHEP)-accredited General sonography program, I have a request for all OB/GYN practices. Please open your practice to accept sonography students. The future of the OB sonographer depends upon it.

If schools cannot provide graduates with good entry-level OB skills, there will not be enough sonographers to fill the OB sonography positions within private practices and this includes the MFM specialties.

Student rotations are down because the sonographers are too busy to allow students to scan. I have been given the following reasons why they are too busy:

  1. Patients are scheduled every 30 minutes all day.
  2. Work-ins are expected to be added daily into the already booked schedule
  3. It is not uncommon for a single sonographer to perform 15–20 patients per day.
  4. There are usually no breaks except for lunch, maybe.
  5. Some practices have more than one sonographer but each performs the same amount of studies so there is no relief person to help out.

This type of scheduling (over-scheduling) sets up a whole new set of questions.

  1. How long can one sonographer sustain such a schedule without suffering from burn-out and choose to leave employment?
  2. How long can one sonographer sustain such a schedule without suffering from repetitive stress injuries that will force their retirement?
  3. If sonographers are having to rush through studies to get all of the patients through, what are they missing?
  4. What is the satisfaction level of the patient who feels they are on an assembly line when getting their sonogram?  I do believe this is one reason many “peek-a-boo -see your baby” businesses are flourishing; OB patients want to experience fetal bonding with their families, time for which the private practice schedules do not allow. (“The AIUM advocates the responsible use of diagnostic ultrasound and strongly discourages the non-medical use of ultrasound for entertainment purposes.” See The Issue with Keepsake Ultrasounds for more information.)

Although there is value in observation, which the students may be allowed to do, nothing can replace a hands-on experience with supervision and instruction. And, yes, labs help, but the accrediting bodies require our students to scan patients not models.

For at least 2 decades, educators have struggled to find OB clinical sites that would allow their students to gain the scanning skills needed to complete their clinical competency exams, which are required for graduation. With no resolution in sight, even the Joint Review Committee on Education in Diagnostic Medical Sonography (JRC-DMS) and CAAHEP have recognized that some General accredited programs could not meet all the standards and, therefore, have now provided us a way to separate out the specialties. This allows for the deletion of the OB specialty from their accredited programs. This is a way for educators to deal with the problem of not being able to gain access to 2nd- and 3rd-trimester OB patients for their students, but it will ultimately be bad news for the OB community in general.

I believe the sonography community is an intelligent and creative group. We can find ways to integrate students into a busy environment. I actually have some clinical sites that do a very good job of it. I encourage you to think outside of the box and let’s get creative so that the schools will be able to provide qualified graduates when they are needed. If we don’t, we will begin seeing private OB “cross-training” on the job, again.

Is that what we really want? Comments, opinions, rebuttals, suggestions are encouraged and I look forward to reading them all.

Kathy A. Gill, MS, RT, RDMS, is a Program Director of the Institute of Ultrasound Diagnostics in Spanish Fort, Alabama. Kathy has been a Registered Diagnostic Medical Sonographer since 1977 and has been involved in sonography education for 30+ years.

Interested in learning more about ultrasound in medical education? Check out the following posts from the Scan:

COVID Life in the Prenatal Ultrasound Suite

It is crazy to think that we are approaching the end of the second year of the worldwide COVID-19 pandemic. If the pandemic were a child, it would be walking, talking, and soon entering the “terrible twos”. In fact, my son was born in late February 2020, so all he knows is the pandemic. To him, masks are normal. He has even started to ask to wear a mask because that’s what everyone else does—mom, dad, his daycare teachers, his grandparents, his cousins. Though once he has one on, he quickly realizes that he prefers life without a mask.

Don’t we all, Andy?

As with most people, work life since the pandemic has changed. As a maternal-fetal medicine fellow, I’ve dedicated my training to the care of pregnant people and their fetuses, and I find the most fulfillment in the ultrasound suite. As cases rose, rooms filled with family and friends waiting for the words on the screen, “It’s a girl!”, during an anatomic survey became rooms with only a masked pregnant person and a masked sonographer (and the unmasked fetus, of course). While one adult support person has always been allowed to accompany each patient at our institution, they were frequently absent, whether they were working from home, caring for other children who are not allowed at appointments, or trying to limit exposures. Sonologists that previously were in and out of ultrasound rooms, scanning and counseling patients, were reading exams and counseling remotely.

Despite all the changes, the work continued. In fact, the pandemic has reminded us all that prenatal ultrasound is a medical necessity. At the height of the pandemic, elective medical procedures were canceled across the country. But the prenatal sonographers and maternal-fetal medicine specialists donned their N95s and face shields, and the prenatal ultrasound suite continued operation. In fact, cases that would have previously been managed with twice weekly non-stress tests were managed with weekly biophysical profiles instead to minimize potential exposures for a patient. Even with a current maternal diagnosis of COVID, arrangements were made to continue weekly umbilical artery Doppler studies for cases of fetal growth restriction. Some scans just cannot be delayed for 2 weeks. Despite all the changes, our purpose was clearer than ever—to provide excellent care for our patients, maternal and fetal.

With the widespread distribution of the vaccine and the decrease in cases, work life has settled into a “new normal”. Children have returned to in-person school, and the support person has returned to the ultrasound suite. N95s have been replaced by more comfortable surgical masks. Counseling a patient and their partner is no longer accompanied by the same degree of fear of a COVID exposure. But life is still far from my expectation of normal. The smiles after receiving the good news that there is one healthy intrauterine pregnancy with a strong heartbeat are still hidden behind cloth, as is the discomfort of an amniocentesis and the anguish when informed of a lethal fetal diagnosis. The impact that the mask continues to make on my ability to connect with and care for my patients cannot be understated.

As we head into the “terrible twos”, I know the pandemic will continue on and there will continue to be ups and downs. Misinformation regarding vaccination still limits widespread acceptance, but as research continues to demonstrate the safety and efficacy of vaccination, I still hold on to the hope that one day I will again be able to sit in a room with a patient unmasked and take in the unspoken communication I’ve so missed. But in the meantime, I’ll take the “new normal” and make the best of it for myself, my family, my colleagues, and my patients.

Kathy Bligard, MD, MA, FACOG, is a loving mom and third-year maternal-fetal medicine fellow at Washington University School of Medicine in St. Louis, MO.

Interested in learning more about patient care? Check out the following posts from the Scan:

The Eyes and Ears of The Patient(s)

I began my ultrasound career in 2001 after graduating from the DMS program, but truth be known, it began sooner than that. I was incidentally placed at a maternal-fetal medicine clinic to do a rotation to get my clinical hours due to a preceptor being absent for an extended period of time at my “established” site, unbeknownst to me or anyone else just how much this would impact not only my career but my life.

When I was exposed to high-risk obstetrics (OB), I was instantly intrigued. I was told that I would need a minimum of 5 years of scanning experience before I could enter that field. For those that know me, know I’m always up for a challenge! I was prepared to do what it took.

At the end of my rotation, my preceptor, the one who would become the most impactful mentor I’d ever had, Ivy Myles, asked if I would be interested in returning to finish my clinicals at their practice, of course, I jumped on it.

Fast forward to today, I have learned that we, as sonographers, are the eyes and ears of the patient, and being in high risk, we are the eyes and ears of TWO patients. That is an incredible amount of responsibility and should not be taken lightly.

So, what does it mean when the job you love comes with so much responsibility? It means that we are in a position to advocate for the patient(s); we listen to them, ask questions that may seem out of curiosity to the patient, but in fact, tell a story of what may or may not be happening with mom and baby. I believe that we are not “picture takers,” we are “storytellers,” presenting our cases to the providers that have learned to trust our skills, talents, and insights.

Over the years, I have fallen more in love with this field and it has become a passion of mine. I want to learn more, teach more, and do more. I have a special place in my heart for the students and new sonographers that want to delve into the high-risk world because of how I entered this field. So, I carry on what my preceptor and mentor gave to me. She saw my skills and my heart for the field and gave me a chance. When a patient is told they are “high risk” and need specialty care at a perinatal center, this is typically not taken lightly. The patient is concerned for her baby and herself. In most perinatal centers where I have worked, the sonographers have a unique position and freedom to talk with our patients, explain the ultrasound, any concerns we may have about the ultrasound (without a diagnosis), we are able to provide a tour of their baby before they meet them, and let the family see their baby being a baby before meeting them on the outside. What a blessing for all!

Carrie Bowen, RDMS, RDCS​, is a sonographer at Perinatal Associates of New Mexico.

Interested in learning more about obstetric ultrasound? Check out the following posts from the Scan:

Ultrasound for Undescended Testicles: Tailoring Use

In the early 1980s, prenatal ultrasound imaging opened the curtains to a “real-time” view of fetal anatomy. What we saw helped limit invasive diagnosis and therapy to those that benefited our unborn patient, and taught us that patiently waiting until after delivery was often the best approach to abnormalities detected in the womb. In other words, wanting to know was no longer a good reason for pursuing an immediate answer; needing to know, to benefit the child, was the rule to follow.

So, let’s skip over 40 years of “boring” fetal diagnostics, genetic testing, treatment, surgeries, and other distractions and talk about the great mystery on everyone’s mind, the hunt for the impalpable testicle—or as I call it, “following the bouncing ball”.

Every fetal sonographer knows what a testicle nestled in the scrotum looks like and will often be required to quickly gloss over the classic image in order to avoid the unwelcome or undesired “reveal”. As depicted in the diagram below, imaging after 20 weeks may show the scrotum (B) and after 30 weeks (C) may show “ball in sac” if the rest of the child behaves. If, however, the testicle(s) are not cooperative, nobody panics.

Schematic of testicular descent under normal influences with abdominal (A) position; descent to the internal ring (B); scrotal descent with patent processus vaginalis (C); descent complete with complete regression of the gubernaculum and occlusion of processus vaginalis (D). CSL indicates cranial suspensory ligament; T, testosterone; AMH, anti-mullerian hormone; S, sertoli cells; L, leydig cells, INSL3, insulin-like factor 3; GFN, genitofemoral nerve.

But after birth, if one or both testicles fail to stare the waiting observer in the eye, or happily make themselves easily ballotable in their pocket, the alarms go off and rational processes falter. In this vacuum of clinical reason, the reflex order for an ultrasound (US) emerges and sadly obscures best care of both the child and parents. Why should you wait to order an US? Because I am a pediatric Urologist and I said so! If that answer doesn’t suffice, as it never has for me at home or office, let me try and explain.

Case 1

Both testicles are absent to examination at birth. Well, if a newborn of male appearance and yet unknown genotype has no testicles, that neonate is a girl until proven otherwise. Genetic testing will answer that and other potential questions of chromosomal gender.

The lone cry in the wilderness that ultrasound can “find” nonpalpable testes, ignores the literature that shows that in an examination, a specialist will feel the previously un-felt testicle in over 80% of children, which is equivalent to US success. Add to that the false-positive rate of 15% (generous here) where an immobile abdominal or clinically absent gonad is “found” in the groin on US and we are rapidly approaching the poster-child for unwarranted examinations. I do not deny the HUGE contribution of US to the work-up of ambiguous genitalia and intersex conditions, supplanting fluoroscopy and even MRI in many centers, but please do not confuse garden-variety “lost balls” with these more complex issues.

Case 2

The infant or child has one or no balls in their pocket on subsequent examination after birth. Referral to a specialist often comes after US, MRI, and even CT scans seeking to see “where” the ball has strayed along its path to the scrotum. MR and CT for this concern are unjustified as a result of their expense and risk exposure, so I will speak of them no further.

If we go back to our rule that imaging is done to help the child or parents, how does the pre-specialty referral US play out? If the US finds a testis, I would have found it anyway, but the US will not define whether it is retractile (normal with a reflex requiring observation, not surgery), or truly undescended, where surgery is warranted after 6 months of age.

If US fails to find a testicle, I will need to do surgery for certainty (US false negatives on intrabdominal gonad are 10%—again generous) as testicular cancer is possible in undescended testes at 5 times the rate of the general population and direct surgical inspection is as near to 100% certainty of whether a testicle exists or not, as one can get.

So, tell me, where’s the harm in noninvasive, nonpainful, nonionizing, inexpensive imaging. Well? I’m waiting. Never mind. Let me tell you.

Imagine you are a parent. Testicles are absent on US, where does your mind go? Testicles are in the inguinal canal, where does your mind go? Now remember, not because I say so; not because I am some gifted guy; but because of my training and experience, I eliminate the worry after 60 seconds in the office and reverse the concerns set in motion in over 90% of visits after imaging. I would say that’s a lot of “Google-worry-stress time” avoided, so, it is therefore worth foregoing US before the specialist exam.

Finally, in the worst-case scenario, US finds testicles, and, as a result, the primary care physician tells the parents it’s OK, and an infant is denied time-sensitive surgery to maximize testicular function and possibly decrease cancer risk simply because the “presence” was interpreted as “normal”. The US window to gonadal and urogenital anatomy is evolving and brilliant, with contrast-enhanced ultrasound (CEUS), molecular imaging, and elastography promising even more advances. Our common goal is to have our tools create better outcomes and minimize the potential for harm.

Robert Mevorach, MD, is Chief of Pediatric Urology at the University of South Alabama, Mobile, and is Secretary of the American Institute of Ultrasound in Medicine (AIUM) Urology Community (2021–2023).

Interested in learning more about urologic ultrasound? Check out the following resources from the AIUM:

The New Genetics: Is Ultrasound Dead?

There are those who pretend that we do not need ultrasound anymore to detect fetal anomalies, “Just use maternal blood and with various forms of genetic testing and you will be able to detect the majority of fetal anomalies.”

Well, let me rebuke this insinuation.

3D ultrasound image of a fetus.
Acrania in a fetus at 11 weeks.

Genetics

There is no doubt that prenatal genetic testing has come a long way from using only maternal age to assume a risk of Down syndrome (for instance 1 in 1250 at age 25 and 1 in 385 at age 35). Maternal serum screening came next. At first, levels of alpha-feto-protein (AFP) were found to be lower in mothers carrying fetuses affected with Down syndrome.

Then, other markers, such as human chorionic gonadotropin (hCG), unconjugated estriol, and dimeric inhibin A, were determined to display characteristic patterns in pregnancies with Down syndrome, with the introduction of the double, triple, and quadruple screening in the second trimester. This moved to the first trimester, with incorporation of fetal nuchal translucency (NT), pregnancy-associated plasma protein A (PAPP-A), and the beta subunit of human chorionic gonadotropin (β-hCG). A high detection rate of 85–90% was attained for Down syndrome and 90–95% for trisomy 18, with a 5% false-positive.

A combination of both the first and second trimester was introduced, to further improve the detection rate and, at the same time, decrease the false-positive rate.  In some of these tests only serum fetal-placental protein markers were considered (integrated) and in others ultrasound findings (NT) and various serum markers were combined (integrated, sequential, and contingent).   

It is widely accepted that testing of the type used nowadays originated from a Lancet paper in 1997 by Lo and colleagues, describing circulating cell-free fetal DNA (ccffDNA) in the plasma of pregnant women. It took almost 15 years for the technology to become clinically available1. At first, it was used to determine the risk of trisomies and sex chromosome anomalies. Originally designed as noninvasive prenatal diagnosis (NIPD) or noninvasive prenatal testing (NIPT), the general opinion is that these are still screening (and not diagnostic) tests, hence the designation noninvasive prenatal screening (NIPS). I prefer noninvasive DNA screening (NIDS) because, after all, ultrasound is NIPT!

Nowadays, NIDS can be used to identify Rhesus group and some single-gene fetal conditions, autosomal dominant, recessive or sex-linked (eg, cystic fibrosis, achondroplasia, thanatophoric dysplasia, sickle cell disorder, congenital adrenal hyperplasia, spinal muscular atrophy, and hemophilia). Most conditions require using a maternal blood sample only but many require a paternal blood sample. Normal karyotype doesn’t mean everything is fine, hence chromosomal microarray, introduced in the prenatal diagnosis clinical setting in 2005. Looking for submicroscopic aberrations <5Mb can provide additional diagnostics in about 10% of fetuses with multiple anomalies1. The latest reiteration of the technology is genome-wide monogenic NIDS2.

Screening beyond the common trisomies is currently not recommended by the American College of Obstetricians and Gynecologists3. So where does ultrasound stand?

Ultrasound is alive and doing fine, thank you

In the general population, chromosomal abnormalities are less frequent than structural abnormalities. A large number of fetal structural abnormalities, especially many lethal ones, can be diagnosed in the first trimester of pregnancy, therefore, ultrasound remains an essential part of the story. Ultrasound diagnosis of fetal anomalies has now moved from the mid-second trimester (18–22 weeks) to the late first–early second-trimester (approximately 11–14 weeks). It should be noted that a repeat scan at the “classical” time (18–22 weeks) is still recommended by most.

Ultrasound image of a fetus with the NT measurement marked.
Image courtesy of Sergiu Puiu, MD

Two major reasons for the early scan: it’s a perfect time to perform a nuchal translucency (NT) measurement and, at that stage, most structural anomalies that are already present are detectable. A few examples of what is observable include all 4 limbs and all digits, cranial anatomy, estimation of the cardiac axis, and omphalocele (which is associated with Beckwith-Wiedemann and CHARGE syndromes, limb-body stalk anomaly, and Pentalogy of Cantrell, to name a few). Amputations or other unusual cleft due to amniotic band syndrome are visible and cardiac position and orientation can also be determined. In incidences of heart defects, dextrocardia is associated with 90% and situs inversus with levocardia with over 95%.

Most of the above anomalies will be associated with an increased NT, as will pulmonary, gastrointestinal and genitourinary conditions, diaphragmatic hernia, skeletal dysplasia, fetal anemia, and abnormal lymphatic drainage4. A third of congenital abnormalities occurring in fetuses with increased NT may remain undetected in the first trimester of pregnancy, unless cfDNA is used in combination with fetal sonographic NT assessment. When karyotype is normal, 10% of fetuses with an increased NT (>95th percentile) have structural abnormalities5.

In one study5, 65% of structural abnormalities would have potentially been missed in the first trimester if cfDNA had been used as a first-trimester screening test without an early ultrasound scan. Furthermore, if cfDNA only was used, besides structural defects, one third of other anomalies would have been missed: sex chromosome abnormalities, triploidy, single gene disorders, and submicroscopic aberrations <5Mb. In addition to NT measurements and detection of structural anomalies, several other sonographic markers have been described: nasal bone, ductus venosus Doppler anomalies and tricuspid regurgitation, helping to determine a high-risk group for whom genetic screening will have a high yield.

When these or/and other ultrasound-diagnosed fetal anomalies are present, whole-exome-sequencing can add relevant information in cases when an etiology could not be elucidated by fetal karyotype testing or chromosomal microarray6.

In a very recent article, Bedei et al. propose several conclusions, one of them being: “NIPT should always be combined with a skilled ultrasound examination.”7

My thoughts, exactly8.

I purposely do not wish to initiate a discussion on the ethical, moral, philosophical, religious, or emotional values or demerits of prenatal diagnosis. While some will say that all this is a veiled “search and destroy” exercise, others will explain that knowledge is power. Power to choose but also power to be ready when the baby is born or power to correct certain anomalies in the womb or intervene immediately at birth. Both sides of this argument may be defensible, but that is for another blog.

References

1. Talkowski ME, Rehm HL. Introduction of genomics into prenatal diagnostics. Lancet 2019 Feb 23; 393(10173):719–721.

2. Rabinowitz T, Shomron N. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput Struct Biotechnol J 2020; 18:2463–2470.

3. American College of Obstetricians and Gynecologists screening for fetal chromosomal abnormalities: ACOG practice bulletin summary, number 226. Obstet Gynecol 2020; 136:859–867.

4.  Baer RJ, Norton ME, Shaw GM, et al. Risk of selected structural abnormalities in infants after increased nuchal translucency measurement. Am J Obstet Gynecol 2014; 211:675.e1–19.

5. Bardi F, Bosschieter P, Verheij J, et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat Diagn 2020; 40:197–205.

6. Petrovski S, Aggarwal V, Giordano JL, et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 2019;393(10173):758-767

7. Bedei I, Wolter A, Weber A, Signore F, Axt-Fliedner R. Chances and challenges of new genetic screening technologies (NIPT) in prenatal medicine from a clinical perspective: A narrative review. Genes (Basel) 2021; 12:501. 8. Rauch KM, Hicks MA, Adekola H, Abramowicz JS. Aneuploidy screening: the changing role of ultrasound. In: Abramowicz JS (ed). Ultrasound in the First Trimester, a Comprehensive Guide. Switzerland: Springer International Publishing AG; 2016:131–152.

Jacques S. Abramowicz, MD, FACOG, FAIUM, is a professor of OB-GYN and Director of Ultrasound Quality Assurance in the Department of Obstetrics and Gynecology at the University of Chicago.

More from Jacques Abramowicz, MD:
COVID-19: How to Prepare Yourself and Your Ultrasound Equipment During the Pandemic, an on-demand webinar from the AIUM (a collaborative activity with Samsung).

Interested in learning more about obstetric ultrasound? Check out the following posts from the Scan:

Ultrasound Imaging of Obese Pregnant Women

As the rate of obesity continues to increase worldwide (last reported by the CDC as 42.4% as of 2017–2018), it has become even more evident that there is a great need to improve fetal cardiac visualization in obese pregnant women. Less than 50% of morbidly obese women have successful fetal 4-chamber and outflow tract visualization, compared to almost 90% of nonobese women.

Obese women are also significantly more likely than normal-weight women to have children with a congenital heart disease, with an even higher risk in morbidly obese women, who give birth to children who have higher odds of having atrial septal defects, hypoplastic left heart syndrome, aortic stenosis, pulmonic stenosis, and tetralogy of Fallot.

And when obese pregnant women have reduced rates of complete anatomic surveys, lower detection rates, and increased risk of fetal anomalies due to less than perfect anatomy visualization, how do we improve the fetal cardiac visualization?

A team of researchers from Eastern Virginia Medical School looked into whether ultrasound (US) imaging in early gestation could help.

Amara Majeed, MD; Alfred Abuhamad, MD; Letty Romary, MD; and Elena Sinkovskaya, MD, PhD, performed a study in which all study participants (obese pregnant women) with a gestational age of 13 weeks to 15 weeks 6 days, underwent an US exam using a transvaginal or transabdominal approach and color Doppler US for fetal cardiac screening, which they defined as complete when all components of the 4-chamber, right ventricular outflow tract, left ventricular outflow tract, and 3-vessel views were clearly visualized. The participants also underwent a traditional transabdominal examination at 20 to 22 weeks, and if that exam was incomplete, underwent another 2 to 4 weeks later.

What they found was that the addition of early-gestation US to the 20- to 22-week US exam of obese pregnant women substantially improved the visualization of fetal cardiac anatomy. And for the women with a BMI of greater than 40 kg/m2, the cardiac screening completion rate was even higher (significantly so) for the early-gestation exam plus a traditional exam (90%) than for the traditional exam plus the second traditional exam (72.7%).

Adding an ultrasound exam at a gestation age of 13 weeks to 15 weeks 6 days substantially improved the visualization of fetal cardiac anatomy, particularly for the women with a BMI of greater than 40 kg/m2. Having complete or more complete anatomy screening can enable an earlier, accurate diagnosis.

To read more about this study, download the Journal of Ultrasound in Medicine article, “Can Ultrasound in Early Gestation Improve Visualization of Fetal Cardiac Structures in Obese Pregnant Women?”. Members of the American Institute of Ultrasound in Medicine can access it for free. Join today!

If you have any questions about the study, please ask in the comments; the authors of the article will be happy to respond.