Focused Ultrasound for Brain Tumors: Hope for the Future of GBM

In John Grisham’s book The Tumor, he tells a story of the typical clinical pathway and trajectory of a patient diagnosed with glioblastoma (GBM), a devastating brain tumor. Then, he sets the stage for a re-imagination of this patient’s clinical course if focused ultrasound were added to his treatment armamentarium. What this could look like is less suffering, longer life expectancy, and cost savings.

Glioblastoma has a 90% mortality rate within 5 years of diagnosis. This disease has lacked any significant improvement in survival in over 30 years, despite scientific advances in many areas, such as molecular subtyping, tailored chemotherapy regimens, and immunotherapy. The current standard-of-care treatment for GBM includes surgical resection, chemotherapy, and radiation.

Focused ultrasound is an emerging therapeutic technology that has the potential to change the treatment landscape and clinical trajectory for a multitude of diseases and conditions, including GBM. The fascinating thing about focused ultrasound is that scientists and clinicians have discovered that the properties of the ultrasound energy can be manipulated in such a way as to induce a variety of different biological effects and mechanisms of action. The technology was initially designed to thermally ablate tissue, but since that time, more than 20 mechanisms of action have been identified.

In GBM, there are three focused ultrasound mechanisms of action that are being employed as an adjunct or complement to traditional therapies: opening of the blood-brain barrier (BBB), sonodynamic therapy (SDT), and radiation sensitization or enhancement (Figure 1).1,2

Figure 1: Focused Ultrasound (FUS) Mechanisms of Action related to brain tumor therapy (A) Blood Brain Barrier Opening (BBBO): In the presence of focused ultrasound, intravenously injected microbubbles oscillate inside the brain’s blood vessels and stretch the tight junctions, allowing therapeutics to diffuse into the targeted region. Not depicted here are the additional mechanisms of sonoporation and increased transcytosis, which also occur with FUS-mediated BBBO. (B) Sonodynamic Therapy: Intravenous injection of a sonosensitizer such as 5-ALA accumulates preferentially inside brain tumor cells. Conversion of the sonosensitizer into an active substrate (ie PpIX) induces tumor cell death. (C) Radiation Sensitization: The proposed mechanism of action involves ceramide-induced endothelial apoptosis, which subsequently enhances radiation by causing vascular disruption. Distortion of the endothelial cell membrane by oscillating microbubbles in the presence of the FUS beam releases ceramide, which then causes platelet aggregation and thrombosis.

The most clinically advanced of these three focused ultrasound mechanisms is BBB opening, which is currently being investigated in numerous clinical trials that combine this technique with delivery of chemotherapeutic agents.3–5 Thus far, safety and efficacy have been confirmed, and I am excited to see additional clinical trial results. SDT clinical trials are also underway and have shown promise. Lastly, using focused ultrasound to enhance radiation is being investigated.

There are also a variety of focused ultrasound devices being investigated for use, from MRI-guided to neuronavigation-guided to implantable devices. Each system offers unique benefits and challenges, which continue to be elucidated through ongoing clinical work.

One more promising frontier for focused ultrasound and GBM is liquid biopsy. Just as focused ultrasound plus microbubbles can disrupt the BBB to allow the passage of therapeutics into the tumor, this method also allows for the leakage of tumor biomarkers into the blood from the tumor, enabling enhanced diagnosis and monitoring methodologies for GBM.6

While this blog post provides a brief overview of focused ultrasound for GBM, it hopefully conveys that the technology is ripe for helping patients live longer, more comfortable lives. The Focused Ultrasound Foundation is on a mission to engage and convene the scientific and medical communities to make this happen as quickly, safely, and effectively as possible so that the fictional character that Grisham described can become a reality.

Author’s note: The Foundation is also enthusiastic about using this technology in a similar fashion for children with diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG), and this area has experienced significant growth over the past year. To learn more, visit the Foundation’s webpage dedicated to DIPG/DMG.

References

  1. Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol 2022; 157(2):237–247. doi: 10.1007/s11060-022-03974-0. Epub 2022 Mar 10. PMID: 35267132; PMCID: PMC9021052.
  2. Parekh K, LeBlang S, Nazarian J, et al. Past, present and future of focused ultrasound as an adjunct or complement to DIPG/DMG therapy: A consensus of the 2021 FUSF DIPG meeting. Neoplasia 2023; 37:100876. doi: 10.1016/j.neo.2023.100876. Epub 2023 Jan 28. PMID: 36709715; PMCID: PMC9900434.
  3. Bunevicius A, McDannold NJ, Golby AJ. Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg 2020; 19:9–18. doi: 10.1093/ons/opz374
  4. Mainprize T, Lipsman N, Huang Y, et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 2019; 9:321. doi: 10.1038/s41598-018-36340-0.
  5. Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: From thermoablation to drug delivery. Nat Rev Neurol 2021; 17:7–22. doi: 10.1038/s41582-020-00418-z. 
  6. Meng Y, Pople CB, Suppiah S, et al. MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors. Neuro Oncol 2021; 23:1789–1797. doi: 10.1093/neuonc/noab057.

Lauren Powlovich, MD, MBA(c), serves as Associate Chief Medical Officer at the Focused Ultrasound Foundation (FUSF). She brings together key stakeholders and synthesizes and executes cohesive plans to lead initiatives in the advancement of focused ultrasound for several applications including glioblastoma, neurodegenerative disorders, pediatrics, pain management, and sonodynamic therapy. She is a co-leader of the Research and Education Team, which strategizes on the allocation of FUSF’s resources to best position the field for success. Prior to joining the Foundation, Lauren trained as an anesthesiologist, and she has always been passionate about putting patients first. She continues to have that mindset and works hard to ensure that focused ultrasound reaches patients as efficiently and safely as possible.

How Our Ultrasound Practice Flourished

My name is Barbara, and I have been an Ultrasound tech for more than 30 years now. Part of my job for the last 25 years has been to get and keep our labs accredited. We recently changed the accrediting body to the American Institute of Ultrasound in Medicine (AIUM). Our initial accrediting body has always been a pleasure to work with, but inside I felt that the AIUM must be more in tune with what our concerns are, being it is strictly ultrasound.

We changed up 2 years ago, and wonderful things started to happen. First, we added more heart views, as, before, only the 4-chamber view was required. We changed that. Many of our younger techs were not proficient with all of the views, so we all pulled together. Our boss let us set up multiple hands-on training sessions from the older, more experienced Sonographers. He let us have as much time as we needed. It was beautiful to watch everyone working together.

Also, as a requirement of our Diagnostic Breast accreditation, every tech in our department got Breast certified; at least 15 techs needed to. Which everyone did willingly. The Radiologist now having to get 15 credits in breast ultrasound, did that willingly too. Everyone was on the same page.

Then what is even more astonishing is our boss came to me and asked if I would set up a quality assurance program. He realized that our exams are so tech-dependent that the techs need a resource to help them grow. And in a busy department, he wanted to make sure they all get what they need to be the best they can be.

As a part of that quality assurance program, management has allowed me to take time in my schedule to review a Sonographer’s ultrasound images. I review at least 30 exams to see a pattern or determine what the sonographer may lack. I then go over my results with the individual tech about image quality, image technique, etc. And, if we noticed the tech may need help in a certain area, we set up a one-on-one or place that tech with a tech that is more experienced to build the less-experienced tech’s confidence and skills.

I am so proud of our management and staff…Thank You, AIUM, for being a catalyst for such good things!!!!

Barbara A. Fennen, RT(M), RDMS, RVT, is a Sonographer at Beebe Healthcare in Rehoboth Beach, DE.

Threading the Needle at UltraCon

Ultrasound has many advantages when used for interventional procedures such as improved visualization of the anatomy in relation to the needle tip. But acquiring the skills to perform ultrasound‐guided procedures takes time and practice.

And that is why the AIUM has devoted a full-day symposium called “Threading the Needle” to this topic on March 27, 2023, at UltraCon. The symposium provides a comprehensive overview of ultrasound-guided procedures, including:

Instrumentation
The needles and associated instrumentation commonly used in ultrasound-guided procedures will be shared. Important features and variations in equipment will be introduced for all specialties.

Teaching Tools
How do you teach others at your institution to perform procedures? The facilitator will provide an overview of best practices with specific examples.

Skills Station
Needle guidance principles will be taught for clinical applications such as IV access, target practice, and more utilizing hands-on models and cutting-edge technologies.

Safety
What are the important safety considerations when performing ultrasound-guided procedures?

Threading the Needle is just one of eight in-depth symposia featured at UltraCon 2023. Check out the Full Schedule to get a sneak peek at everything you could learn.

Another helpful resource about these procedures is the AIUM Practice Parameter for the Performance of Selected Ultrasound-Guided Procedures.

Therese Copper, BS, RDMS, is the Director of Accreditation, and Mark Macoit is the Marketing Manager at the American Institute of Ultrasound in Medicine (AIUM).

Why Have UltraCon FOMO When You Can Be a Part of the Transformation of Medical Ultrasound?

Are you still on the fence about deciding whether or not to attend UltraCon, a reimagined take on the American Institute of Ultrasound in Medicine’s annual meeting? The transformation of the AIUM’s annual ultrasound meeting into UltraCon is an exciting step forward for the field. It will provide a platform to connect professionals, share ideas, and learn from each other. 

Previously, we’ve highlighted the benefits of attending Day 1 and Day 2 of UltraCon, but what about Day 3? Just one look at the UltraCon schedule, and you can tell that this is going to be its busiest day yet! Despite the jam-packed program, there are a ton of amazing professional development opportunities ready for you to explore. On Tuesday, four new symposia will kick off, covering topics from 3D/4D imaging to musculoskeletal sonography. There’s also a shark tank competition, an e-poster kiosk hall, the annual AIUM Awards session, and don’t forget about the William J. Fry Memorial Lecture. 

Let’s dive into the first new symposia, Early Pregnancy Ultrasound: Implications and Impacts on Care. This TED-talk-style forum is a great resource for learning about critical issues in the first trimester, such as providing equitable care in the emergency department and managing life-threatening situations. It has not only valuable information for medical professionals but also provides important insight into how to support patients after Dobbs. Participants can earn up to 1.5 CMEs.

Next, we have Optimizing Outcomes in Prenatal Imaging. During this symposia, participants can increase the quality and patient experience in obstetric imaging with a multidisciplinary approach. A group of specialists will present TED talks on topics such as early trimester issues, health inequities, and maternal/fetal life-threatening situations. Improve imaging outcomes via a perception bias workshop, challenging cases, and using the 3D world to understand ultrasound. Plus, roundtables with industry on image optimization and a special session on understanding the lifecycle of prenatal imaging. Participants can earn up to 3.0 CMEs.

POCUS: Cutting-Edge Uses and Controversies is the third symposium of Day 3. Point-of-care ultrasound (POCUS) is revolutionizing the way clinicians diagnose and treat patients. By providing real-time insights, POCUS offers quick, accurate, and cost-effective diagnosis of clinical problems. From development to bedside, POCUS has changed the game for clinicians worldwide. Are you seeking an engaging and informative symposium to discuss current POCUS advancements in medical ultrasound? Look no further than POCUS: Cutting-Edge Uses and Controversies symposium, which discusses topics such as global health, first-trimester concerns, scan ownership, POCUS workflow, and more. With an array of activities, including lectures, panel discussions, and workshops, this is sure to be a stimulating symposium that will leave you informed and inspired.

Breaking the Sound Barrier: Shaping the Future of Ultrasound is the last symposium of the day. The highly interactive symposium on ultrasound technologies is a great opportunity for clinicians, technologists, researchers, industry, and other stakeholders to learn about the latest advancements in ultrasound technology. This symposium will provide an invaluable platform for experts to share their knowledge and insights on how to utilize ultrasound techniques in clinical settings effectively. Attendees will have a chance to interact with leading professionals from around the world and discuss potential solutions for existing challenges within this field.

Outside of attending the symposia, there are several other interactive activities for participants to engage in. Firstly, the AIUM supports an ePoster program every year where attendees can explore and learn at their own pace through self-guided exploration. Secondly, attendees who have a great ultrasound idea and want to pitch it to industry can submit an application to pitch their ideas to venture capitalists, leaders from the industry, and an IP attorney, for the chance to win a cash prize of $1,000. Lastly, don’t forget to attend the 2023 William J. Fry Lecture given by pioneer in gynecologic ultrasound, Dr. Steven R. Goldstein, entitled “Do You Do POCUS: Why reinvent the wheel?”.  

UltraCon will be the must-attend event of the year for medical professionals who want to stay up-to-date on the latest advancements in ultrasound technology. With a wide variety of engaging sessions and workshops, there’s something for everyone, so avoid getting caught with FOMO. All of this is just what is available on the third day of symposia at UltraCon. Check out the Full Schedule to start planning out your UltraCon journey.

Arian Tyler, BS, is the Digital Media and Communications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Ultrasound: A Diagnostic Tool and for Treating Injuries and Diseases

Now, more than ever, staying up to date on the latest trends and innovations in ultrasound is essential for physicians. This year, the annual meeting of the American Institute of Ultrasound in Medicine (AIUM) is being transformed into UltraCon! This new conference puts you at the center of the conversation where expertise meets interaction and debate. So how can you ensure that you are prepared to take full advantage of this transformative opportunity? 

In a previous post, we highlighted how you could explore new, exciting, and current technologies in ultrasound; identify the different approaches to diagnostic ultrasound; and determine which ultrasound techniques can help you advance your practice at “Can You Do That With Ultrasound?” on day one at UltraCon (March 25–29, 2023). Day two at UltraCon offers attendees more opportunities to deepen their understanding of ultrasound—both as a diagnostic tool and in treating injuries and diseases—through two additional symposiums: “Optimizing Ultrasound Image Quality” and “Ultrasound Diagnoses You Can’t Miss.”

Optimizing Ultrasound Image Quality

Optimizing ultrasound image quality and, ultimately, patient care is at the heart of this symposium. As a healthcare professional, you will be well-equipped to succeed at this task with knowledge gained through key topics such as physics, knobology, and Doppler, as well as improving patient/probe position. You will benefit from roundtable discussions that cover image reviews and quality assurance—useful topics that can help move one step closer to improving patient outcomes. Earn 5 CMEs for learning about ultrasound technology advancements, advancing your image acquisition techniques, and finding ways to improve image quality. This symposium is sure to contribute to providing better patient care!

This symposium will feature a total of 8 engaging and interactive sessions for attendees to participate through in groups:

  • Physics: So Easy it Hertz,” led by Frederick Kremkau, PhD, FAIUM. How does ultrasound work? It’s all about physics. Knowing the role physics plays will help you avoid artifacts.
  • “Know Your Knobs,” led by Elena S. Sinkovskaya, MD, PhD. To even get an ultrasound image, you must know how your machine works, how to make fundamental adjustments, and how to make optimal use of B-mode. Glossary handout included.
  • “Elements of Scanning,” led by Margaret R. Lewis, MD. Improve your ultrasound diagnostics by understanding optimal patient and transducer positioning techniques, equipment quality assurance, and more.
  • “Demystifying Doppler,” led by Tracy Anton, MD. What is Doppler ultrasound? How does it work? How do I select the correct equipment? How do I interpret the results? Learn all this and more by attending.
  • “Just Images Roundtable,” led by Mishella Perez, BS, RDMS, RDCS, FAIUM, and Yvette S. Groszmann, MD, MPH. Learn what you can do to improve image quality across specialties, including OB, GYN, MSK, POCUS, and Vascular.
  • “Echoes of the Past to the Voices of the Future,” led by Frederick Kremkau, PhD, FAIUM. Attend this session to understand how prior advancements in ultrasound technology have established the scaffold for the possibilities of the use of diagnostic ultrasound in the present and the future.
  • “Ultrasound Quality Assurance Roundtable,” led by Timothy Canavan, MD, MSc, FAIUM, Therese Cooper, BS, RDMS, David Jones, MD, FAIUM, Anita Moon-Grady, MD, and Aubrey Rybyinski, MD. Understanding the role of accreditation and continuous QA is essential to ensuring the best outcomes for patients. Hear from a panel of experts to better guide your practice and get answers to your questions.
  • Image Quality Trivia: Test your ultrasound knowledge during this fun, quiz-style game where the entire audience participates. Topics include OB, fetal echo, GYN, physics, MSK, and general imaging.

Ultrasound Diagnoses You Can’t Miss

Ultrasound diagnoses are a crucial part of maintaining top-level medical care. Ultrasound experts from various disciplines meet in this symposium to share their expert knowledge and experience, allowing participants to stay on top of the imaging findings and avoid any form of misdiagnosis. During the symposium, a multispecialty expert panel will create an interactive discussion for the attendees to apply their learning to real clinical scenarios. And what’s more? You can earn up to 5.75 CMEs just by attending this “Ultrasound Diagnoses You Can’t Miss” symposium!

This symposium will feature a total of 17 engaging and interactive sessions for attendees to participate in where subspecialty discussion, breakout opportunities, and rapid case reviews will take place.

UltraCon is an incredible opportunity for medical ultrasound practitioners who want to stay up-to-date on all things related to medical ultrasound technology. From interactive debates to resource handouts, exhibitor sandboxes, and focus groups—this event has something for everyone! Come prepared with an open mind and get ready to connect with experts from around the world while learning about the exciting new possibilities that are transforming the field of medical ultrasound today! Don’t miss out—All of this is just what is available on the second day of symposia at UltraCon. Check out the Full Schedule to get a sneak peek at everything you could learn.

Arian Tyler, BS, is the Digital Media and Communications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Where to Find What’s New in Ultrasound and Education

As the use of ultrasound is expanding at a greater rate than ever, both as a diagnostic tool and in treating injuries and diseases, keeping up-to-date on all of the changes can be a struggle. In an upcoming symposium, however, you can explore new, exciting, and current technologies in ultrasound. Identify the different approaches to diagnostic ultrasound and determine which ultrasound techniques can help you advance your practice at “Can You Do That With Ultrasound?” on March 26, 2023, at UltraCon.

This symposium is an exciting new approach to discovering the technical advancement of ultrasound and applications across all subspecialties with collaborative interactions and networking opportunities to enhance the experience. It will begin with a discussion with John Pellerito, MD, Luis O. Tierradentro-Garcia, MD, Emile Redwood, MD, and John K. Hill of three abstracts with cutting-edge content regarding assessing cerebral blood flow in neonatal hydrocephalus, analyzing gene expression, and robotics-assisted transabdominal cerclage in pregnancy.

Next, with images and clinical histories, you will be able to review cases and discuss how each specialty group would approach the systems using different ultrasound techniques and instrumentation. Jon Jacobson, MD, Humberto Rosas, MD, Margarita Revzin, MD, MS, FSRU, FAIUM, Misty Blanchette Porter, and Stephanie Gisele Midgley, MD, will facilitate the discussion on state-of-the-art scanning techniques and innovative technology. Following that, John Pellerito, MD, will assist you with networking and crowdsourcing the answers to your questions. Then, industry representatives, expert clinicians, and expert researchers will also take questions.

Another symposium, “Everyone Can Be an Effective Ultrasound Educator” will also be happening that same day. Filled with practical and effective strategies and techniques to improve your teaching skills, Todd D. Zakrajsek, PhD, the keynote speaker, will share his thoughts on the foundational aspects of learning and relatively easy ways to teach while considering the diversity of learners today, as well as dispel learning myths and traps that hinder the learning process.

This symposium will feature a total of 8 engaging and interactive sessions for attendees to rotate through in groups:

  • Active Learning, Learning by Doing,” led by Charlotte Henningsen, MS, RT(R), RDMS, RVT, FSDMS, FAIUM, Rebecca J. Etheridge, EdD, RDMS, and Sara Durfee, MD, will show you how to apply creative and meaningful activities designed to enhance the teaching and learning environment.
  • Case-based Teaching: Let’s Have a Shared Learning Experience,” led by Iryna Struk, MS, RDMS, RDCS, RVT, and Jennifer Cotton, MD, will offer strategies for using case-based learning (CBL), an established approach used across disciplines where learners apply their knowledge to real-world scenarios, promoting higher levels of cognition.
  • Good Job. Keep It Up. Effective and Ineffective Feedback Strategies in Ultrasound Education,” led by Creagh Boulger, MD, Lauren D. Branditz, MD, and Christine M. Schutzer, RT, BS, RDMS, will review the literature and techniques for effective feedback and assessment.
  • Designing Virtual Lectures: A Necessary Challenge,” led by Kevin J. Haworth, PhD, Petra Duran Gehring, MD, RDMS, and Jacob Avila, MD, will review concepts in lecture design to increase student learning.
  • Gaming: Trendy Buzz Word or Effective Educational Tool?” led by Creagh Boulger, MD, and Rachel Liu, MD, will be a hands-on activity to solve your needs in education and how you can apply gaming as an effective, evidenced-based strategy for assessment, learning, and engagement.
  • Old School, New School, Best School,” led by Linda Zanin, Jennifer Cotton, MD, Lee Shryock, and Michelle Haines, will help you determine which new and exciting technologies are worth the investment and how you can integrate them into your curriculum.
  • Social Media and Education,” led by Kevin J. Haworth, PhD, and Chris Fox, MD, discusses ways in which social media can be used to improve teaching and learning.
  • The Impact of Emotional Intelligence in Education,” led by Charlotte Henningsen, MS, RT(R), RDMS, RVT, FSDMS, FAIUM, David Bahner, MD, and Hilary L. Davenport, DO, will provide tools that can help strengthen students’ emotional intelligence, which can positively impact relationships, academic success, and work performance.

In addition, this symposium includes “Learn From Our Learners,” in which former and current students (Creagh Boulger, MD, and Jennifer Cotton, MD) will share things that have worked well, experiences that have not worked well, and ideas they have for ways ultrasound can be better utilized in education.

All of this is just what is available on the first day of symposia at UltraCon. Check out the Full Schedule to get a sneak peek at everything you could learn.

Cynthia Owens, BA, is the Publications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Ultrasound Education in United States Medical Schools

Although nearly every medical specialty uses ultrasound, medical schools are inconsistently integrating ultrasound education into their curriculum. According to a 2019 study (by Nicholas et al) of United States Accredited Medical Schools (USAMS),1 although integration of ultrasound into curricula has increased since a prior study in 2014 (by Bahner et al),2 ultrasound instruction is still inconsistent.

In the fall of 2019, researchers contacted 200 allopathic and osteopathic USAMS for the Nicholas study.1 Of those schools, 168 (84%) responded and, of those, 122 (72.6%) indicated they have an ultrasound curriculum.

Of the medical schools that responded, 46 (23%) indicated they did not have ultrasound curriculum. 1

Although this study did not look into why they did or did not have the curriculum, some barriers clearly still remain to incorporating it, such as those mentioned in a 2016 study by Dinh et al3: lack of funding, lack of trained faculty, and lack of curricular space.

According to the Nicholas study, it seems as though some of the schools (42) work around the lack-of-funding barrier by having volunteers as faculty. Only 35 (20.8% of those who responded) compensate their faculty and, of those, 22 (13.1%) are compensated monetarily.1 And when schools can’t afford their own ultrasound machines, some have found other means, such as borrowing hospital ultrasound equipment. 3 Other means of helping to distribute the cost of starting up a program include gradually adding classes, using near-peer teaching, and self-directed asynchronous learning using online resources and simulators.3 

As medical students who have learned about ultrasound have reported that it improves their understanding of anatomy and physical examination skills, and more specialties adopt this technology, students need to learn about it before they need to use it in clinical practice.1

Although more schools keep adding ultrasound to their curricula, it is not yet nationwide, and many who have succeeded had to struggle to make it happen. It is imperative that USAMS receive the funding and support they need to train medical students in the safe and effective use of ultrasound.

References

    1. Nicholas E, Ly AA, Prince AM, et al. The current status of ultrasound education in United States medical schools. J Ultrasound Med 2021; 40:2459–2465. https://doi.org/10.1002/jum.14333.
    2. Bahner D, Goldman E, Way D, Royall NA, Liu YT. The state of ultrasound education in U.S. medical schools: results of a national survey. Acad Med 2014; 89:1681–1686.
    3. Dinh VA, Fu JY, Lu S, Chiem A, Fox JC, Blaivas M. Integration of ultrasound in medical education at United States medical schools: A National Survey of Directors’ experiences. J Ultrasound Med 2016; 35:413–419. https://doi.org/10.7863/ultra.15.05073.
    4. Tarique U, Tang B, Singh M, Kulasegaram KM, Ailon J. Ultrasound curricula in undergraduate medical education: a scoping review. J Ultrasound Med 2018; 37:69–82. https://doi.org/10.1002/jum.14333.

    Cynthia Owens, BA, is the Publications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

    Pick-Up-and-Go Block Bags for Fascia Ilaca Blocks

    Ultrasound-guided regional anesthesia is a mainstay of multimodal pain control and is becoming an increasingly important part of emergency medical care. Regional anesthesia allows for maximal analgesia while minimizing the adverse effects of opioids, such as respiratory depression and sedation. The fascia iliaca block is one such procedure that provides regional anesthesia in the Emergency Department (ED) for proximal femur fractures and hip fractures.1 This plane block is performed by depositing a moderate volume of local anesthetic, usually bupivacaine, into the potential space between the fascia iliaca and the iliopsoas muscle. The procedure provides analgesia in the distribution of the femoral nerve, as well as the obturator nerve and lateral femoral cutaneous nerve. 1 Patients who receive this procedure experience improved pain scores and a reduction in the need for opioid medication.2–5 The use of preoperative regional nerve blocks, specifically including older patients with hip fractures, is supported by 2022 American Association of Orthopedic Surgeon guidelines.5,6

    At Rutgers New Jersey Medical School, we developed a teaching paradigm for the fascia iliaca block, with an online didactic session followed by a hands-on simulated skills session offered to faculty and residents (Figure 1, Rutgers NJMS Emergency Medicine residents learning to perform the fascia iliaca block on a porcine simulation model).

    Figure 1, Rutgers NJMS Emergency Medicine residents learning to perform the fascia iliaca block on a porcine simulation model.
    Figure 1A
    Figure 1, Rutgers NJMS Emergency Medicine residents learning to perform the fascia iliaca block on a porcine simulation model.
    Figure 1B

    Later in the year, we performed a quality assurance project in order to determine what barriers existed to performing this block, in order to maximize the number of eligible patients that received this valuable procedure. We found that the fascia iliaca block was performed about 16% of the time when indicated (Figure 2).

    A bar graph indicating that, of those who received a nerve block, 87 were for hip/femur fractures (~3-4 per week), 16% (95CI: 10% to 25%) received the block, and 90% (95CI: 82% to 95%) completed the survey.
    Figure 2. Percentage of eligible patients who received the block.

    The most common reason for the block not being performed was the perceived lack of time during a busy clinical shift (Figure 3), which was a factor that was present in more than ¾ of missed opportunities.7 We theorized that this limitation came from a combination of the time required to obtain consent from the patient, gather supplies, coordinate with the admitting Orthopedics service, and ultimately perform the procedure.

    A bar graph indicating the number and strength of each agreement for each response.
    Figure 3. Reasons that the block was not performed.

    To address this barrier, we created ready-made pick-up-and-go nerve block kits containing all the necessary materials for performing ultrasound-guided nerve blocks in the ED (Figure 4). These kits include sterile gloves, ultrasound probe covers, sterile drapes, spinal needles, syringes, IV tubing, nerve block reference materials, and a consent form. We placed the kits in a centralized location in the ED for ease of access.

    Figure 4A. A collection of nerve block kits ready for use.
    Figure 4B. Contents of a nerve block kit.

    As a result of this intervention, we have anecdotally noted an increased number of procedures performed, with a complete analysis forthcoming. As our program increases the scope and scale of regional anesthesia procedures offered to patients, the nerve block kits will hopefully eliminate a barrier to performing nerve blocks and thus facilitate the deliverance of high-quality patient-centered analgesia to the largest number of patients possible.

    References

    1. Chesters A, Atkinson P. Fascia iliaca block for pain relief from proximal femoral fracture in the emergency department: a review of the literature. Emerg Med J 2014; 31(e1):e84–e87. doi:10.1136/emermed-2013-203073.
    2. Groot L, Dijksman LM, Simons MP, Zwartsenburg MM, Rebel JR. Single fascia iliaca compartment block is safe and effective for emergency pain relief in hip-fracture patients. West J Emerg Med 2015; 16:1188–1193. doi:10.5811/westjem.2015.10.28270.
    3. Ritcey B, Pageau P, Woo MY, Perry JJ. Regional nerve blocks for hip and femoral neck fractures in the emergency department: A systematic review. CJEM 2016; 18:37–47. doi:10.1017/cem.2015.75.
    4. Haines L, Dickman E, Ayvazyan S, et al. Ultrasound-guided fascia iliaca compartment block for hip fractures in the emergency department. J Emerg Med 2012; 43:692–697. doi:10.1016/j.jemermed.2012.01.050.
    5. Kolodychuk N, Krebs JC, Stenberg R, Talmage L, Meehan A, DiNicola N. Fascia iliaca blocks performed in the emergency department decrease opioid consumption and length of stay in patients with hip fracture. J Orthop Trauma 2022; 36:142–146. doi:10.1097/BOT.0000000000002220.
    6. O’Connor M, Switzer J. AAOS Clinical practice guideline summary: Management of hip fractures in older adults. J Am Acad Orthop Surg 2022; 30(20):e1291–e1296. doi: 10.5435/JAAOS-D-22-00125.
    7. Alsharif P, Muckey E, Lu H, et al. Emergency department workflow limits the utilization of fascia iliaca blocks for hip and femur fractures. Academic Emergency Medicine 2022; 29(S1). https://doi.org/10.1111/acem.14511.

    Peter Alsharif MD, Marwa Ali MD, Helen Lu MD, Robert James Adrian MD, Annette Mueller MD MBA, Ilya Ostrovsky MD, and Stephen Alerhand MD, are from the Department of Emergency Medicine at Rutgers New Jersey Medical School in Newark, New York.

    Musculotendinous Ultrasound Imaging Applications in Sports Medicine

    There is a clearly established role of ultrasound imaging in traditional medical contexts to optimize patient assessment and subsequent care. These same applications have been carried over into sports medicine settings, especially with recent developments in ultrasound portability. Such technological advancements enable athletic trainers and other sports medicine clinicians to perform sideline assessments for athletes who sustain musculoskeletal injuries during sports.

    Beyond diagnostic applications of ultrasound imaging, sports medicine clinicians and researchers have begun to adopt this tool as a creative means to assess musculotendinous structures in response to sport and exercise. Ultrasound imaging has advantages over other measurement techniques given that it is relatively inexpensive equipment, fairly easy to operate (especially if you know your anatomy!), and can be rapidly implemented into assessments. Ultrasound imaging also enables clinicians to perform more dynamic assessments with patients to understand functional movement patterns, and noninvasively examine deeper tissue structures. The real-time visual platform uniquely provides the opportunity to enhance patient-clinician dialogue and provide feedback to target key muscle groups during fundamental exercises.

    Below, several exemplary studies that leverage ultrasound imaging in musculotendinous contexts are presented to convey the depth and breadth of innovation in the sports medicine field and highlight opportunities for future ultrasound implementation into practice.

    Muscle Morphology

    Ultrasound has been most frequently implemented in sports medicine research to conduct table-top assessments of musculotendinous structures. This measurement approach provides insights to clinicians on patients’ muscle and tendon changes in response to exercise (eg, weight- and height-adjusted size, fiber arrangement and quality). For example, researchers have been able to examine lower limb musculotendinous responses across long-distance running training.1,2 Beyond training adaptations, clinicians are also able to get some insights into structural tissue changes in the presence of current or future musculoskeletal injury. This has specifically been done to examine musculotendinous adaptations at the shoulder complex,3 foot complex,4 and lumbopelvic hip complex5 across a range of pathological populations. Preliminary work has begun to identify signals in tendon tissue quality that relate to future pain in running athletes.1 Such studies will continue to help inform rehabilitative and training interventions to improve muscle and tendon quality to move toward injury risk reduction in sports medicine.

    Dynamic Muscle Function

    In addition to the role of ultrasound imaging in more static imaging contexts, ultrasound has been implemented in sports medicine research in more functional contexts. Researchers have inventively started to use foam blocks with Velcro elastic belts to secure portable ultrasound probes on patients to visualize deep lumbopelvic hip muscles across a range of exercises and movements to assess the role of these muscles during fundamental movements (Figure).6 Through this approach, researchers have examined athletes’ transverse abdominis muscle thickness during an abdominal draw-in maneuver across patient positions to determine which activity elicited the most “bang for your buck” in muscle activity.7 Additionally, this measurement approach has been used to assess gluteal muscle function throughout treadmill walking. In these instances, ultrasound videos were obtained to quantify muscle activity throughout movement and identify activity dysfunction among patients with lower limb injuries.8,9 These examples emphasize the utility of ultrasound imaging to supplement typical sports medicine clinical assessments and underscore the opportunity for clinicians to implement ultrasound imaging in more dynamic assessments.

    An athlete with ultrasound probes attached to her leg. A screen in the fore ground shows the ultrasound image.

    Real-time Feedback

    Ultrasound imaging demonstrates great promise as a rehabilitative feedback tool for patients who have difficulty recruiting specific muscle groups as a result of injury.10 The most robust use of ultrasound for feedback has been taking dynamic assessments of the lumbopelvic hip complex muscles a step further and using ultrasound to allow patients to visualize their muscles during abdominal contraction exercises. In this manner, clinicians have been able to show patients their muscle activity, and encourage activation of select muscles during rehabilitative exercises. This approach has been found to be more successful for patient neuromuscular education than other feedback approaches, such as verbal encouragement. The visual interface not only helps patients to see and understand muscle recruitment in real time but also helps clinicians to see when patients are able to activate proper stabilizing muscle groups as opposed to “cheating” on an exercise and using global movers to achieve a movement. While there is less available information on the use of ultrasound for feedback for targeting other muscle groups during rehabilitation, these studies highlight the opportunities for ultrasound imaging to maximize patient benefit during clinical interventions.

    The Future of Ultrasound in Sports Medicine

    Ultrasound imaging can clearly play a key role in sports medicine assessments and interventions. Continued research is necessary to broaden our understanding of musculotendinous changes in relation to sports injuries and rehabilitation, as current research is still scraping the surface of ultrasound opportunities in sports. Ultrasound assessments may complement other forms of athlete assessments and provide more in-depth insights into muscle and tendon function in relation to performance and injury. It is plausible that with continued technological advancements and the miniaturization of ultrasound units, clinicians may be able to use imaging during more sport-specific activities at higher velocities to unearth real-time musculotendinous changes in physical activity. The prospects of ultrasound are promising, and this tool may continue to revolutionize patient care in sports medicine clinics.

    References

    1. Cushman DM, Petrin Z, Eby S, et al. Ultrasound evaluation of the patellar tendon and Achilles tendon and its association with future pain in distance runners. Phys Sportsmed. 2021; 49:410–419. doi:10.1080/00913847.2020.1847004.
    2. DeJong Lempke AF, Willwerth SB, Hunt DL, Meehan III WP, Whitney KE. Adolescent marathon training: prospective evaluation of musculotendinous changes during a 6-month endurance running program [published online ahead of print September 29, 2022]. J Ultrasound Med. doi:10.1002/jum.16105.
    3. Thomas SJ, Blubello A, Peterson A, et al. Master swimmers with shoulder pain and disability have altered functional and structural measures [published online ahead of print April 13, 2021]. J Athl Train. doi:10.4085/1062-6050-0067.21.
    4. Fraser JJ, Koldenhoven R, Hertel J. Ultrasound measures of intrinsic foot muscle size and activation following lateral ankle sprain and chronic ankle instability. J Sport Rehabil 2021; 30:1008–1018. doi:10.1123/jsr.2020-0372.
    5. Dieterich AV, Deshon L, Strauss GR, McKay J, Pickard CM. M-Mode ultrasound reveals earlier gluteus minimus activity in individuals with chronic hip pain during a step-down task. J Orthop Sports Phys Ther 2016; 46:277–285. doi:10.2519/jospt.2016.6132.
    6. DeJong AF, Mangum LC, Hertel J. Ultrasound imaging of the gluteal muscles during the Y-balance test in individuals with and without chronic ankle instability. J Athl Train 2019; 55:49–57. doi:10.4085/1062-6050-363-18.
    7. Mangum LC, Henderson K, Murray KP, Saliba SA. Ultrasound assessment of the transverse abdominis during functional movement: Transverse abdominis during movement. J Ultrasound Med 2018; 37:1225–1231. doi:10.1002/jum.14466.
    8. DeJong AF, Mangum LC, Hertel J. Gluteus medius activity during gait is altered in individuals with chronic ankle instability: An ultrasound imaging study. Gait Posture 2019; 71:7–13. doi:10.1016/j.gaitpost.2019.04.007.
    9. DeJong AF, Koldenhoven RM, Hart JM, Hertel J. Gluteus medius dysfunction in females with chronic ankle instability is consistent at different walking speeds. Clin Biomech (Bristol, Avon). 2020; 73:140–148. doi:10.1016/j.clinbiomech.2020.01.013.
    10. Valera-Calero JA, Fernández-de-Las-Peñas C, Varol U, Ortega-Santiago R, Gallego-Sendarrubias GM, Arias-Buría JL. Ultrasound imaging as a visual biofeedback tool in rehabilitation: An updated systematic review. Int J Environ Res Public Health. 2021; 18(14):7554. doi:10.3390/ijerph18147554.

    Alexandra F. DeJong Lempke, PhD, ATC, is a clinical assistant professor of Applied Exercise Science, co-director of the Michigan Performance Research Lab, and a member of the Exercise & Sport Science Initiative within the U-M School of Kinesiology.

    Interested in reading more about MSK ultrasound? Check out these posts from the Scan:

    Can We Mix Some “Natural” Intelligence With the Artificial?

    As vascular surgeons involved with reading vascular ultrasound, we are no strangers to innovation in our clinical practice. Endovascular innovations have revolutionized this specialty and allowed our patients to recognize longer, more enjoyable lives as a result. I would say that as a specialty, vascular surgeons are generally embracing of new technology with the required amount of skepticism to ensure what we are doing actually helps our patients.

    In recent years, there has been a boom in the use of artificial intelligence (AI) in many areas of practice. This includes surveillance of aneurysms, cannulation of vessels, as well as vascular ultrasound. Like many innovations, I think that as kinks get worked out the innovation and speed that AI brings will benefit our patients. I support the move forward.

    However, we need some caution as we move forward. At our busy institution, we run our sonographers and radiologists off their feet with ultrasound studies of patients who have had increasingly complex open and endovascular treatments, often bilateral and often following other procedures. When my phone rings with one of our vascular radiologists on the phone, I can be assured of 3 things. The first is they are more than likely calling about one of the patients with a case similar to what I have mentioned above. The second assurance is that we will have a very fruitful conversation, while viewing pictures, about exactly what the sonographic findings are, what they mean for the patient, and how they may be worked up further, if necessary. I am also sure that I will engage with details of the procedure and the rationale for why it was done. This free-flow discussion will result in the third assurance, our patients will receive better care.

    I am quite sure these conversations are happening all over the world. They bring two specialties together; they meld the art with the science, resulting in better patient care. My concern is that with the increasing use of AI, especially in the complicated cases, we will lose this connection and the ability to exchange information. We see this to some extent already; “In basket me!”, “text it over”, “check your email”. (Please don’t view this as an anti-technology rant, it really isn’t. Please view it as a pro-discussion rant!)

    My concern is that the natural extension of AI use will be the elimination of experienced specialists who can engage in discourse about challenging problems and the specialists’ innate ability to leverage each other’s natural intelligence and experience. The very nature of widespread AI use in vascular ultrasound discounts this important exchange and actually rewards it for not occurring. It’s a system designed for speed and throughput, and its natural extension will be less conversation as the images are not passing the eyes of an experienced clinician but rather a microchip.

    As I stated, I am not anti-technology, but I am pro-discussion! It behooves our specialties to celebrate this unique relationship we have had over decades. Call each other; support and explain things to each other. Be an example to others of true collaboration between “competitive” specialties. Embrace the technology as a means to showcase the true value of our different, yet complementary skills: excellent patient care. Besides, a cheerful phone call beats an “in-basket” any day.

    Jonathan Cardella, MD, FRCS, is an Associate Professor of Surgery (Vascular) and Program Director of the Vascular Surgery residency at Yale School of Medicine.

    Interested in reading more about the importance of communication? Check out these posts from the Scan: