Ultrasound: The Therapy of the Future Coming to a Clinic Near You!

Ultrasound is most commonly known for diagnostic imaging and image-guided interventions, but there is also the potential to harness its power for therapeutic benefits. The use of ultrasound as a therapy is growing, with more than 1,900 active clinical investigations underway. There are also avenues to get insurance reimbursement for the treatment of certain ailments with ultrasound therapy, including bone metastases, essential tremor, and prostate.

In order to help guide physicians that may become involved in the use of ultrasound therapies, the Bioeffects Committee of the American Institute of Ultrasound in Medicine (AIUM) has issued new and updated statements on the AIUM website. These statements help to identify what to consider when using ultrasound therapies, including what happens to the targeted tissue and safety. Some highlights from these statements include:

  • Although safe when used properly for imaging, ultrasound can cause biological effects associated with therapeutic benefits when administered at sufficient exposure levels. Ultrasound therapeutic biological effects occur through two known mechanisms: thermal and mechanical. Thermal effects occur as the result of absorption of ultrasound waves within tissue, resulting in heating. Mechanical effects, such as fluid streaming and radiation force, are initiated by the transfer of energy/momentum from the incident pulse to tissue or nearby biofluids. Indirect mechanical effects can also occur through interaction of the ultrasound pulse with microbubbles such as ultrasound contrast agents. Importantly, thermal and mechanical mechanisms can trigger biological responses that result in desired therapeutic endpoints.
  • The type of bioeffects generated by ultrasound depend on many factors, including the ultrasound source, exposure conditions, presence of cavitation nuclei, and tissue type. Different bioeffects will require different amounts of ultrasound, and thermal and mechanical mechanisms can occur simultaneously for some exposure conditions.
  • There is the possibility of adverse effects in therapeutic ultrasound for targeted and untargeted tissue. Practitioners using these modalities must be well trained on the safe and effective use of therapeutic devices, knowledgeable about potential adverse events, aware of contraindications, and diligent in performing safe procedures. Image guidance should be used to ensure accurate targeting and dosing to maximize the outcomes for patients.

The statements issued by the AIUM’s Bioeffects Committee are intended as baseline considerations when a new therapy device is being put into practice. As ultrasound therapies continue to be adopted into clinical use, the Bioeffects Committee will continue to monitor outcomes in order to inform and educate the community.

Interested in learning more about the bioeffects of ultrasound? Check out the following Official Statements from the American Institute of Ultrasound in Medicine (AIUM):

The Power of Ultrasound in Physiotherapy

In incredible ways, ultrasound has revolutionized the path to recovery for patients with soft tissue damage and enhanced the patients’ overall well-being. It is a cutting-edge therapeutic technique that harnesses the power of sound waves to stimulate deep tissues, accelerate healing, and alleviate pain. Through its mechanical vibrations, ultrasound effectively increases blood flow, reduces inflammation, and enhances the flexibility of muscles and tendons. This noninvasive modality has significantly impacted the field of physiotherapy.

The Benefits of Ultrasound in Physiotherapy

  1. Accelerated Healing: The primary benefit of ultrasound therapy is its ability to expedite the healing process. By encouraging collagen production, ultrasound facilitates the repair of tissues, enabling faster recovery from various injuries and conditions. Witnessing the speed at which a body can regenerate and mend itself is truly remarkable.
  2. Pain Relief: Dealing with pain can be physically and mentally debilitating. Thankfully, ultrasound therapy can provide immense relief. By stimulating sensory nerves, this modality effectively alleviates pain, allowing a runner to focus on their recovery and regain their quality of life.
  3. Improved Circulation: Optimal blood circulation is vital for the healing process. Ultrasound therapy can be instrumental in enhancing circulation, ensuring that oxygen and essential nutrients reach the damaged tissues more efficiently. As a result, inflammation reduces, and overall healing is optimized.
  4. Enhanced Mobility and Flexibility: A lack of mobility and flexibility can hinder daily activities and impact overall well-being. Ultrasound therapy can cause significant improvements in these areas. The targeted sound waves promote soft tissue mobilization, increasing flexibility and range of motion. This newfound freedom of movement has been a game-changer for many patients.
  5. Noninvasive and Safe: One of the most appealing aspects of ultrasound therapy is its noninvasive nature. Patients can receive effective treatment without the need for surgical interventions or invasive procedures. This not only minimizes downtime but also provides peace of mind for the patient, who knows that they are undergoing a safe and risk-free therapy.

Incorporating Ultrasound Into Physiotherapy Sessions

During physiotherapy sessions, the utilization of ultrasound therapy can be a straightforward and comfortable experience. The physiotherapist applies a gel to the targeted area and gently moves a handheld transducer over the skin. The transducer emits therapeutic sound waves, which penetrate deep into the tissues, providing the desired benefits. The duration and frequency of ultrasound treatment are tailored to the patient’s specific needs, ensuring optimal results.

It is crucial to emphasize that ultrasound therapy should always be administered by trained professionals who can customize the treatment according to individual requirements, and can take into account any contraindications. Physiotherapists conduct thorough assessments and develop personalized treatment plans that may include a combination of ultrasound therapy, stretching exercises, strengthening routines, and other complementary techniques.

Ultrasound is a transformative, revolutionary therapy in the realm of physiotherapy. Through its ability to accelerate healing, alleviate pain, improve circulation, and enhance mobility, ultrasound has become an indispensable tool in the journey toward improved well-being. If you are considering physiotherapy or seeking effective treatment options, I highly encourage you to explore the incredible benefits of ultrasound therapy. Consult with a qualified physiotherapist who can review your case and determine whether it is in your best interest to experience the remarkable healing potential of ultrasound firsthand.

Interested in learning more about ultrasound in physiotherapy? Check out the following articles from the American Institute of Ultrasound in Medicine’s (AIUM’s) Journal of Ultrasound in Medicine (JUM). Members of AIUM can access them for free after logging in to the AIUMJoin the AIUM today!

And, check out this post from the Scan:

Cynthia Owens, BA, is the Publications Coordinator for the American Institute of Ultrasound in Medicine (AIUM).

Dawning of Another Golden Age for Ultrasound

Diagnostic ultrasound is an essential clinician’s tool. And, although it often does not get the attention (such as Nobel Prizes) of its sibling imaging modalities, it is the most utilized imaging modality in the world, depending on the metric.

The reasons why ultrasound is an essential tool are likely obvious to most readers of this blog. Ultrasound is relatively inexpensive, portable, and provides real-time imaging. It can be brought to patients who might otherwise be unable to receive imaging, whether that is because of the condition of the patient or the condition of the world around them. The variety and depth of our communities of practice attest to the robustness of this imaging modality (as does this blog, in its relatively short history). Furthermore, ultrasound imaging is not a static field; new technologies and applications, such as the use of artificial intelligence for COVID-19 diagnosis, are being incorporated on a continual basis.

Kevin Haworth, PhD, Cardiovascular

The American Institute of Ultrasound in Medicine (AIUM) has played a central role in the history and promotion of ultrasound imaging due to its membership. I would argue one of its greatest strengths is that the AIUM provides a home for anyone involved in ultrasound: sonographers, physicians, scientists, academicians, students, private practice providers, and industrial partners. There are a number of other professional societies associated with ultrasound imaging, but none that cover the same breadth of topics and people.

The AIUM has done this, in part, by stepping up to the openings before it. The AIUM has embraced a variety of opportunities to make a difference in the lives of patients, including decades ago with the advent of the ‘modern’ array and continuing to more recent capabilities including bedside POCUS, telehealth, and artificial intelligence.

Is the AIUM ready to continue its role as the preeminent home for all areas of ultrasound? Is it ready to fully embrace the dawning of another golden age for ultrasound – therapeutic ultrasound?

The field of therapeutic ultrasound has a rich history stretching back decades. What separates the current era from the past is the combination of technological advancements made and the pairing of these technologies with dedicated clinicians. Furthermore, the field has been accelerating as it learns from past successes to create future ones. One of the most notable initial advances was the use of ultrasound thermal ablation of uterine fibroids, which has been available to women in the United States since 2004. A number of companies have subsequently obtained FDA clearance, the European CE mark, or other equivalent regulatory approval for their ultrasound thermal ablation devices, enabling the treatment of a wide range of conditions.

In the past decade, reimbursement has also become available for ultrasound treatment of bone metastases and essential tremor. Most importantly though, the pipeline is rich with dozens of potential applications and hundreds of clinical trials. Importantly, the mechanism of action by which ultrasound can have a therapeutic effect has grown beyond thermal ablation, with clinical trials in blood-brain barrier disruption, ultrasound-mediated drug delivery, and mechanical tissue ablation (just to name a few).

The AIUM already has a number of our basic-scientist and clinician-scientist members making great contributions, particularly within the Basic Science & Instrumentation and Therapeutic Ultrasound Communities of Practice. However, to remain the preeminent home for all areas of ultrasound, we will need engagement from the entire broad and rich swath of expertise that our full membership community has to offer. There are important questions to answer, and I do not pretend to know the answers. I am confident, though, in the ability of our community to answer them. A few of the important questions for us to consider are:

  1. Just as there has been great opportunity in bringing together ultrasound imaging expertise across medical fields, do we see similar opportunity in being a home to bring together ultrasound therapy expertise across different medical fields?
  2. How do we make our society a welcoming place for therapeutic ultrasound clinicians who might not have the deep background in diagnostic ultrasound that is common of current AIUM members?
  3. How do we integrate our existing imaging expertise in helping to advance therapy, through treatment planning, guidance, and monitoring?
  4. How do we break down some of the silos between our existing communities, particularly the more discovery-oriented communities and the more practice-oriented communities?
  5. As we have played an important role in establishing standards, guidelines, and practice parameters in ultrasound imaging, should we do the same for therapeutic ultrasound?

The fundamental question, however, is: do we want to remain to be the American Institute of Ultrasound in Medicine, or do we want to be the American Institute of Ultrasound Imaging in Medicine?

Kevin Haworth (Twitter: @kevinhaworth) is an Associate Professor of Internal Medicine at the University of Cincinnati in Ohio.

Therapy Dogs

What could be cuter and more beneficial to patients than a team of six Golden Retriever therapy dogs showing kids how to undergo procedures?

Jessie having echocardiogram-1

Therapy dog, Jessie, undergoes an echocardiogram while being comforted by ‘Mom’, who is holding her paw.

At Southampton Children’s Hospital in the UK, the therapy dogs help the pediatric patients overcome their anxiety and fear by providing support ranging from general meet-and-greet style Animal Assisted Activity visits to Animal Assisted Therapy. The therapy dogs assist in physiotherapy, speech and occupational therapy, phlebotomy services and injections, radiology investigations, and by supporting children in the anaesthetic room.

leo on mri scanner

Leo demonstrating laying down in an MRI scanner.

One of the reasons therapy dogs are so helpful is that they are nonjudgmental and take the healthcare environment in stride. They don’t cajole or persuade, and I am sure that is why the children sometimes trust them more than the people who are with them. Every parent and medical staff member is trying to get the procedure done, which is why using the dogs as a bridge between the healthcare team and the child is so very useful. As a volunteer, it has been a privilege to be able to develop this service for the hospital.

I am delighted to say that we have images and videos that enable us to assist the medical staff even when we are not there! The library of pictures and videos that the staff can show the children when they are anxious includes such things as:

  • A short film, ‘Leo goes to X-ray,’ showing therapy dog, Leo, going to the X-ray department and explaining how easy it is to have a radiology investigation, whether it is a plain film X-ray or CT/MRI scan.  (https://www.youtube.com/watch?v=Vb8kIU4y9H4)
  • A video of a therapy dog heading down to theatre after admission procedure and showing what the route to theatre looks like as well as showing the anaesthetic room.
  • As well as many adorable and helpful photos.

archie investigations collage

Archie demonstrating, from top left, a thermometer to the arm, stethoscope to the chest, SATS testing, and pulse oximitry on a paw.

You can see more in this report on yahoo! news.

 

 

Have you ever worked with therapy dogs? If so, what was your experience like? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community.

Connect_digital_graphics_E-NEWSLETTER

Lyndsey Uglow is the Lead Animal Assisted Intervention Handler at Southampton Children’s Hospital Therapy Dogs.

Interdisciplinary Education and Training in MSK Ultrasound

In my primary specialty of occupational medicine there is a need for practical education in musculoskeletal ultrasound for both diagnostic evaluation and therapeutic interventional guidance. Incorporation of this into education has begun recently and is continuing in the specialty. A wide variety of specialties are represented in occupational medicine, including many specialists who move into the field after a mid-career transition.

Interestingly, over the last few years, clinicians have approached me and asked me to help them learn musculoskeletal ultrasound from many different disciplines outside of occupational medicine. These have included emergency medicine, orthopedics, rheumatology, sports medicine, family medicine, radiology, palliative care, and physical medicine and rehabilitation. When inquiring into why these clinicians are seeking training in this modality it seems that the consistent answer is thdr-sayeedat medical students are graduating and insisting on using ultrasound in their residency training. It would seem that many of our medical students are learning ultrasound at a rate that will outpace attending physician knowledge, exposure, and experience. Indeed, when teaching ultrasound to many of the medical students at West Virginia University as part of their medical education, I was astounded to see how proficient they were at using the machine, the transducer, and correctly identifying both normal and pathologic anatomy. It’s my understanding that many universities have included medical ultrasound into the academic curricula as a bridge to their respective gross anatomy courses and in their general clinical medical education.

Ultrasound is a modality utilized by many medical specialties for various indications. Several specialties outside of radiology, including the ones above, utilize ultrasound. Increasingly, residency programs are integrating ultrasound into their ACGME-accredited curriculum and, importantly, medical students are also learning the benefits of using the modality. It seems clear that despite the number of pitfalls, hurdles, and difficulties using ultrasound, the modality has proven to be an asset in clinical settings and has become a permanent fixture in hospital and clinical settings. The benefits of utilizing ultrasound have been well documented across many academic medical journals. I believe that medicine, as a whole, has done well to embrace the modality, however, there seems to be another vital step to take in the education arena to more fully integrate the modality into our patient’s care.

Currently, most education models for teaching ultrasound, whether it is for residents or medical students, involves grouping like kind together. Emergency residents learn it in the emergency medicine didactics. Physical medicine and rehabilitation (PM&R) residents learn it from demonstrations in their own didactics, and so on. Perhaps approaching the curriculum from a more inclusive perspective, however, would be more beneficial for residents and fellows. I, personally, had experience teaching an integrated musculoskeletal course at West Virginia University. The idea, admittedly, was born out of necessity. Physicians experienced in ultrasound from sports medicine, emergency medicine and occupational medicine created and executed a curriculum to teach musculoskeletal ultrasound and invited residents from other specialties. The interest we were able to garner quite frankly surprised me. Although the curriculum was targeted to occupational medicine residents the interest in using musculoskeletal ultrasound was widespread. Residents from specialties like emergency medicine, radiology, family medicine, internal medicine, and orthopedics attended our sessions.

While the course was a success, introducing an integrated curriculum across medical specialties posed a new set of challenges. My specialty was able to use dedicated didactic time for the education but many other specialties have disparate educational time. Many residents could not make all of the sessions and many more could not make any sessions because of fixed residency schedules. This makes coordination very difficult. As I have pondered this over the last few months I believe that educational leaders should begin to form structured educational collaborative time for activities like education in musculoskeletal ultrasound. Each discipline will be able to contribute to teaching to ensure high quality evidence-based curriculum for residents learning ultrasound. Each discipline has their individual strengths and collaboration ensures coordination and even learning amongst instructors. Integrating medicine has been a goal of thought leaders in medicine at the very highest levels and can be replicated for the instruction and training of our resident physicians.

Another option is to allow residents to attend the American Institute of Ultrasound in Medicine’s annual conference where interdisciplinary education in ultrasound occurs. This conference even has a day for collegial competition among medical students and schools. In fact, the courses are created to encourage engagement in the education and training of clinicians at all levels of training. The overall goal is to advance the education and training in this modality and hope that education leaders begin to encourage collaboration in a much larger scale thus achieving integrated medical care that provides a building block to lead to high quality evidence-based medical care for our patients, families, and communities.

What other areas of ultrasound education have room to grow? How would you recommend making changes? Do you have any stories from your own education to share? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Yusef Sayeed, MD, MPH, MEng, CPH, is a Fellow at Deuk Spine Institute, Melbourne, FL.