The Potential of Elastography in MSK Ultrasound

Elastography is a method of imaging that detects the compressibility or stiffness of tissues in the imaging field and then overlays a false-color map upon the greyscale image to indicate which tissues are hard/stiff versus soft/compressible. The science behind the technique is beyond the scope of a blog post, particularly as there are several methods by which elastography can be performed.  

In practical terms, elastography is useful in identifying lesions that are sonographically iso-dense compared to their surroundings. Such lesions, while they are therefore visually “iso-grey” (if you will tolerate a neologism), may not be iso-compressible despite their iso-density, and thus when their differential compressibility is identified by elastography it becomes possible to characterize a lesion whose greyscale appearance is not instructive. Among the most common current uses of elastography are the characterization of breast and liver lesions, and indeed the well-known Fibroscan device is, in essence, liver elastography.

There are several instances in the field of musculoskeletal (MSK)/rheumatologic ultrasound in which this technology is appealing, but more work is needed before widespread use will be advisable. I will mention only two of the most obvious examples here. 

Example One

The first example is in the interrogation of a symptomatic tendon or ligament. Such a structure, whose normal function involves incredible amounts of linear tension, when disrupted by trauma or disease, would be expected to lose integrity in the region of the insult and become softer/more compressible than normal in that area.

Traditionally, elastography is not used to measure tendons and ligaments despite the validity of the above statement. The reason for this is that the stiffness of tissue, when measured by elastography, can be expressed in terms of the speed at which a deformation (compression wave) in the tissue propagates, usually in meters per second (there are other units by which stiffness can be measured, but for simplicity’s sake, I will leave it at that).

In the classical case of breast and liver lesions, this is not an issue since the surrounding normal tissue is relatively soft and compressible, so the speed of the propagation of a compression wave is relatively slow. Thus, most elastography measurements top out at a propagation speed of about 10 meters per second, and most normal and abnormal breast/liver tissue will have stiffness values somewhat slower than this. Tendons and ligaments, on the other hand, are by nature very hard/noncompressible. Even in their “relaxed” state, these tissues are so bowstring-tight (relatively) that measuring a normal Achilles’ tendon, for example, will yield only a maxed-out value of “offscale hard” throughout the entire structure. 

It is tempting to say that one could simply recalibrate the machine to measure faster propagation speeds, but, unfortunately, we run into limitations of our current technology. It is simply not possible currently to measure velocities much faster than 10 m/s. 

While we await advancements in technology, the current workaround is to trust that a damaged region of tendon or ligament will be significantly softer, and thus transmit compression waves much more slowly. Therefore, we simply consider any propagation speed that falls out of “offscale” and into the measurable range to be an indicator of pathology.

Example Two

The second example of the potential rheumatologic utility of elastography is in the assessment of systemic sclerosis, commonly known as scleroderma. As the Greek name would suggest, this disease usually includes a characteristic hardening of the skin. The problem is that there is currently no reliable way to quantify skin stiffness. The existing gold standard is a semi-quantitative scoring of skin thickening performed by simple physical examination in which each of several predefined regions of the skin is palpated and assigned a value from 0 to 3. This results in an overall score known as the Modified Rodnan Skin Score (MRSS). Performing Rodnan scoring requires an experienced clinician, and since scleroderma is a rare disease, very few physicians have a large enough cohort in their practice to be able to consider themselves expert Rodnan scorers.

This leads to a host of problems, and one of the worst is that clinical trials in scleroderma (a devastating and potentially fatal disease for which no good treatment exists) are very difficult to conduct because one of the primary endpoints of any trial will be the degree of improvement found in this semi-quantitative and hard-to-perform examination, which is subject to severe inter-rater reliability problems.

When I first started as a rheumatology fellow, I agreed to help with a scleroderma clinical trial in the role of a blinded efficacy assessor. The sponsor brought a dozen or so of us to a hotel for training, and all morning long we cycled through a series of hotel meeting rooms, each containing a volunteer patient for us to score.

It was a disaster.

After lunch, the representative from the sponsor got up to the podium and told us to rip up our afternoon agendas—we were going back to the meeting rooms to examine the volunteers again in an effort to improve the scoring consensus.

Clearly, this situation screams for elastography. The objective measurement of skin stiffness is precisely the datum that is sorely needed. Sadly, our current technology again fails us, as present-day elastography has limitations in resolution and the skin by its anatomic location, will always be very nearly directly applied to the probe face, in a region outside the focal zone of the beam where the measurement physics work best. Further, one of the techniques for performing elastography is highly operator-dependent, because the compression waves being measured are generated by manually varying the pressure of the probe against the skin—definitely a skill that must be learned over time and one that opens the door once more to inter-rater variability.

Overall, elastography holds great promise for MSK/rheumatologic applications in the future, as described in the two examples above. For now, however, it’s currently a technology that is “not ready for prime time” in this field.

This post is intended as a companion to “What Rheumatologists Really Need for Ultrasound Is…”, which discusses advances in ultrasound technology that are sorely needed in the field of MSK ultrasound, and specifically in rheumatology.

Dr. Mandelin is an academic rheumatologist, registered in MSK ultrasound (RhMSUS) by the American College of Rheumatology and certified in MSK ultrasound (RMSK) by the Alliance for Physician Certification & Advancement. He currently serves the AIUM as secretary of the High-Frequency Clinical and Preclinical Imaging Community. Connect with him on Twitter @NU_Rheum_MSK_US.

Shear Wave Elastography and Diffuse Liver Disease

Diffuse liver disease is a worldwide problem. The causes are several, with non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral B or C hepatitis being the most frequent. No matter what the cause is, the chronic inflammation of the liver and the cellular death lead to liver tissue scarring, namely liver fibrosis, that may progress to cirrhosis with its complications.

Staging liver fibrosis is important for the management and prognosis of diffuse liver disease. For decades, liver biopsy has been the reference standard for the staging of liver fibrosis.

Shear wave elastography (SWE) is a method able to assess the tissue stiffness by applying a mechanical stress that induces the generation of shear waves, which then propagates into the tissue with a speed that is proportional to the stiffness of the tissue. The shear waves are generated by a body-surface compression, as in transient elastography (TE), or by the push-pulse of a focused ultrasound beam, as in acoustic radiation force impulse (ARFI) techniques.

The speed of the shear waves is related to the stiffness: they travel faster in stiffer tissue. Using a formula and making some assumptions, it is possible to convert the speed into units of stiffness, ie kilopascals.

A fibrotic tissue is harder (stiffer) than a normal tissue, and an increase of fibrosis is coupled with an increase of the stiffness. Therefore, there is a close positive relationship between fibrosis and stiffness.

TE is an SWE technique performed with the FibroScan system (Echosens). This system has a probe with a tip at the end and a button on the lateral part of it. By pushing the button, the tip compresses the body surface and this deformation propagates into the liver as shear waves. An ultrasound beam tracks the shear wave speed and sends information back to the software of the system. The final reading is in kilopascals. The FibroScan quantifies the stiffness but doesn’t assess the morphology of the liver.

The ARFI techniques are implemented in ultrasound systems that are used for other diagnostic purposes when a patient with diffuse liver disease is evaluated. In fact, using an ultrasound system, it is possible to study the organ’s morphology with B-mode, the hemodynamics with Doppler, and to characterize focal liver lesions with contrast agents. ARFI techniques make use of the energy of the ultrasound beam to generate the shear waves whose speed propagation is assessed in m/s: higher the speed stiffer the tissue.

ARFI techniques include point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE). pSWE measures the stiffness in a small and fixed region of interest whereas with 2D-SWE the stiffness is obtained over a large field of view and a color-coded image, from which the stiffness value is gotten, is displayed on the monitor of the ultrasound system. The shear wave speed can be converted into kilopascals; the ultrasound systems generally provide both speed values in m/s and stiffness values in kilopascals.

The stress is made directly into the liver; therefore, the examination can be performed also in patients with ascites.

All the published studies have shown that the ARFI techniques have accuracy similar to or higher than FibroScan for the staging of liver fibrosis. Over the last years, the assessment of liver stiffness with SWE techniques, either TE or ARFI, has increasingly been used as a means to noninvasively staging liver fibrosis. Currently, guidelines have accepted that SWE techniques can safely replace liver biopsy in several clinical scenarios. SWE can safely be used also in children. It is feasible in children of all ages and has many pediatric applications in the setting of chronic liver disease.

Bibliography

  • Barr RG, Wilson SR, Rubens D, Garcia-Tsao G, Ferraioli G. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology 2020; 296:263–74.
  • Ferraioli G, Wong VW, Castera L, Berzigotti A, Sporea I, Dietrich CF, Choi BI, Wilson SR, Kudo M, Barr RG. Liver Ultrasound Elastography: An Update to the WFUMB guidelines and recommendations. U Med Biol 2018; 44:2419–2440.
  • Ferraioli G. Review of liver elastography guidelines. J Ultrasound Med 2019; 38:9–14.
  • Ferraioli G, Barr RG, Dillman JR. Elastography for pediatric chronic liver disease: a review and expert opinion. J Ultrasound Med 2020; doi: 10.1002/jum.15482

Giovanna Ferraioli, MD, FAIUM, is a researcher at Medical School University of Pavia, Italy. She’s the lead author of WFUMB guidelines on liver elastography, co-author of the SRU consensus, and of several international guidelines on elastography.

Interested in learning more? Check out the following posts from the Scan: