Point-of-Care Ultrasound for Internal Medicine: Don’t Forget the Basics

As specialists in General Internal Medicine, we are excited to see the benefits of incorporating point-of-care ultrasound (POCUS) when assessing medical patients with complex, multi-system disorders. For example, in a patient with heart failure with reduced ejection fraction and chronic obstructive pulmonary disease (COPD) who presents with dyspnea and is found to have diffuse wheezing on auscultation, a number of possible diagnoses exist. Using basic POCUS techniques, findings of asymmetric B-lines, focal pleural irregularity, cardiac findings that seem unchanged from baseline, and a small, collapsible inferior vena cava, increase our suspicion that an infectious precipitant exacerbating the patient’s COPD is the presumptive diagnosis, rather than a primary cardiac cause.

When applied appropriately, POCUS provides real-time data previously not readily available at the bedside. This data can narrow the differential diagnosis [1] and guide intervention. Such benefits of using POCUS to assess medical patients are increasingly known [2–4].  Although new and advanced applications often predominate in the spotlight, basic applications can add a significant amount of information to assist in the care of our patients [5]. The important role that POCUS can play in evaluating medical patients has recently been recognized by the American College of Physicians and Society of Hospital Medicine [6, 7].

As medical educators, we are equally excited about how POCUS can revolutionize bedside teaching—we have seen this tool provide learners with the opportunity to inspect and then confirm the exact location and height of the jugular vein, see then feel a pulsatile liver secondary to severe tricuspid regurgitation, and percuss then visualize a sonographic Castell’s sign [8]. These “aha” moments when our learners see these maneuvers brought to life are incredibly rewarding. However, the excitement that POCUS brings sometimes needs to be balanced by caution.

Despite POCUS being relatively easy to learn, there are multiple pitfalls. The need to apply minimal criteria when acquiring and interpreting images cannot be understated. Just as important as (if not more important than) correctly identifying a positive finding is the ability to recognize when a scan does not meet minimal criteria. Communicating and teaching these limitations to new POCUS users is of paramount importance. Beyond image acquisition and interpretation, achieving competence in clinical integration requires time, repetitive practice, and feedback. As POCUS educators, we frequently see learners flock to advanced applications, such as advanced hemodynamics and detailed cardiac valvular assessments, without necessarily first mastering the basics. Our experience has been that the yield for many of these advanced applications is not high, but the cognitive load in learning them—especially before mastering the basics—is. 

Our approach to using and teaching POCUS is to ensure that we ourselves maintain an appropriate amount of curiosity and humility. We continue to spend time tweaking image acquisition techniques and increasing our understanding of the appropriate uses and limitations of POCUS. This includes expanding our knowledge of the many reasons for false positives and negatives, ensuring our ability to recognize technically limited studies, and maintaining a commitment to finding, applying, and developing the evidence-base to support the use of POCUS for internal medicine. Balancing the tension between experimenting with advanced applications and mastering basic POCUS is sometimes challenging. The steep learning curve of basic POCUS can fool many into thinking mastery has been achieved when there are additional pitfalls to learn.

While we do not wish to dampen learner enthusiasm for high-level applications, we believe there are ways to build learner enthusiasm around basic POCUS. First, we ensure that learners are challenged with cases where clinical integration is complex and nuanced. Emphasis on patient safety and outcomes can help emphasize the need to master basic applications. Second, as educators, we should model a commitment to lifelong learning. Regularly identifying then closing learning gaps can help avoid the illusion that POCUS mastery has been achieved, when in actuality, even basic POCUS applications need to be continually refined and thoughtfully integrated in each unique clinical scenario. This, in addition to encouraging higher-level learners to take a deep dive into high-level applications to appreciate the challenges of these advanced scans, can help maintain while also balancing the excitement of integrating POCUS into the care of complex medical patients. 

REFERENCES

  1. Buhumaid RE, et al. Integrating point-of-care ultrasound in the ED evaluation of patients presenting with chest pain and shortness of breath. Am J Emerg Med 2019; 37(2):298–303.
  2. Filopei J, et al. Impact of pocket ultrasound use by internal medicine housestaff in the diagnosis of dyspnea. J Hosp Med 2014; 9(9):594–597.
  3. Razi R, et al. Bedside hand-carried ultrasound by internal medicine residents versus traditional clinical assessment for the identification of systolic dysfunction in patients admitted with decompensated heart failure. J Am Soc Echocardiogr 2011; 24(12): 1319–1324.
  4. Mozzini C, et al. Lung ultrasound in internal medicine efficiently drives the management of patients with heart failure and speeds up the discharge time. Intern Emerg Med 2018; 13(1):27–33.
  5. Zanobetti M, et al. Point-of-care ultrasonography for evaluation of acute dyspnea in the ED. Chest 2017; 151(6): 1295–1301.
  6. Soni NJ, et al. Point-of-Care ultrasound for hospitalists: A position statement of the Society of Hospital Medicine. J Hosp Med 2019; 14: E1–E6.
  7. Qaseem A, et al. Appropriate use of point-of-care ultrasonography in patients with acute dyspnea in emergency department or inpatient settings: A clinical guideline from the American College of Physicians [published online ahead of print April 27, 2021]. Ann Intern Med. doi: 10.7326/M20-7844.
  8. Cessford T, et al. Comparing physical examination with sonographic versions of the same examination techniques for splenomegaly. J Ultrasound Med 2018; 37(7): 1621–1629.

Janeve Desy, MD, MEHP, RDMS, and Michael H. Walsh, MD, work in the Department of Medicine at the University of Calgary; Irene W. Y. Ma, MD, PhD, RDMS, RDCS, works in the Department of Medicine and Department of Community Health Sciences at the University of Calgary.

Want to learn more about POCUS for General Internal Medicine? Check out the following resources from the American Institute of Ultrasound in Medicine (AIUM):