Pioneering Ultrasound Units

If you think your ultrasound machine is out-dated, imagine if you still had to use these from as long ago as the 1940s. 

1940s

Ultrasonic Locator
Dr G. D. Ludwig, a pioneer in medical ultrasound, concentrated on the use of ultrasound to detect gallstones and other foreign bodies embedded in tissues. During his service at the Naval Medical Medical Research Institute in Bethesda, Maryland, Dr Ludwig developed this approach that is similar to the detection of flaws in metal. This is A-mode in its operation and was Dr Ludwig’s first ultrasonic scanning equipment.

Locator

 

1950s

Ultrasonic Cardioscope
Designed and built by the University of Colorado Experimental Unit, the Cardioscope was intended for cardiac work.

Ultrasonic Cardioscope

 

1960s

Sperry Reflectoscope Pulser / Receive Unit 10N
This is an example of the first instrument to use an electronic interval counter to make axial length measurements of the eye. Individual gates for the anterior segment, lens, and vitreous compartment provided accurate measurement at 10 and 15 MHz of the axial length of the eye. This concept was the forerunner of all optical axis measurements of the eye, which are required for calculation of the appropriate intraocular lens implant power after cataract extraction. This instrument, which includes A-mode and M-mode, was developed by Dr D. Jackson Coleman and Dr Benson Carlin at the Department of Ophthalmology, Columbia Presbyterian Medical Center.

Sperry Reflectoscope Pulser

 

Sonoray Model No. 12 Ultrasonic Animal Tester (Branson Instruments, Inc.)
This is an intensity-modulated B-mode unit designed exclusively for animal evaluations. The instrument is housed in a rugged aluminum case with a detachable cover that contains the cables and transducer during transportation. The movable transducer holder on a fixed-curve guide was a forerunner of mechanical B-scan ultrasonic equipment.

Sonoray Animal Tester

 

Smith-Kline Fetal Doptone
In 1966, pharmaceutical manufacturer Smith Kline and French Laboratories of Philadelphia built and marketed a Doppler instrument called the Doptone, which was used to detect and monitor fetal blood flow and the heart rate. This instrument used the continuous wave Doppler prototype that was developed at the University of Washington. 

Smith Kline Fetal Doptone

 

Smith-Kline Ekoline 20
Working in collaboration with Branson Instruments of Stamford, Connecticut, Smith-Kline introduced the Ekoline 20, an A-mode and B-mode instrument for echoencephalography, in 1963. When B-mode was converted to M-mode in 1965, the Ekoline 20 became the dominant instrument for echocardiography as well as was the first instrument available for many start-up clinical diagnostic ultrasound laboratories. The A-mode was used in ophthalmology and neurology to determine brain midlines.

Ekoline 20

 

University of Colorado Experimental System
Developed by Douglas Howry and his team at the University of Colorado Medical Center, this compound immersion scanner included a large water-filled tank. The transducer moved back and forth along a 4-inch path while the carriage on which the transducer was mounted moved in a circle around the tank, producing secondary motion necessary for compound scanning. 

Compound immersion scannerCompound immersion scanner tub

 

1970s

Cromemco Z-2 Computer System (Bioengineering at the University of Washington)
This color-Doppler prototype, introduced in 1977, was the computer used for early color Doppler experiments. Z2 “microcomputers” were used for a variety of data acquisition and analysis applications, including planning combat missions for the United States Air Force and modeling braking profiles for the San Francisco Bay Area Rapid Transit (BART) system during actual operation.

Cromemco Z-2 Computer System

 

ADR-Model 2130
ADR of Tempe, Arizona, began delivering ultrasound components to major equipment manufacturers in 1973. Linear array real-time scanners, which began to be manufactured in the mid-1970s, provided greater resolution and more applications. Grayscale, with at least 10 shades of gray, allowed closely related soft tissues to be better differentiated. This 2-dimensional (2D) imaging machine was widely used in obstetrics and other internal medicine applications. It was marketed as an electronic linear array, which was faster and more repeatable without the need for a water bath as the transducer was placed right on the skin.

ADR Model 2130

 

Sonometrics Systems Inc, NY BR-400V
The first commercially available ophthalmic B-scanner, this system provided both linear and sector B-scans of the eye. The patient was examined in a water bath created around the eye by use of a sterile plastic ophthalmic drape with a central opening. Both A-scan and B-scan evaluations were possible with manual alignment of the transducer in the water bath. The instrument was developed at the Department of Ophthalmology, Columbia Presbyterian Medical Center by Dr D. Jackson Coleman, working with Frederic L. Lizzi and Louis Katz at the Riverside Research Institute.

Sonometrics Systems Inc, NY BR-400V

 

Unirad GZD Model 849
Unirad’s static B-scanner, allowing black-and-white anatomic imaging, was used with a scan arm and had similar controls as those used today, including processing, attenuation compensation, and gain.

Unirad GZD Model 849

 

1980s

American Flight Echocardiograph
This American Flight Echocardiograph (AFE) is a 43-pound off-the-shelf version of an ATL 400 medical ultrasonic imaging system, which was then modified for space shuttle compatibility by engineers at the Johnson Space Center to study the adaptations of the cardiovascular system in weightlessness. Its first journey to space was on the space shuttle Discovery in 1985 and its last on the Endeavour in 1992. The AFE generated a 2D cross-sectional image of the heart and other soft tissues and displayed it in video format at 30 frames per second. Below, Dr Fred Kremkau explains more about it.

 

To check out even more old ultrasound machines, visit the American Institute of Ultrasound in Medicine’s (AIUM’s) An Exhibit of Historical Ultrasound Equipment.

 

How old is the ultrasound machine you use now? What older ultrasound equipment have you used? Did it spark your desire to work with ultrasound? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community.

Connect_digital_graphics_E-NEWSLETTER

The AIUM is a multi-disciplinary network of nearly 10,000 professionals who are committed to advancing the safe and effective use of ultrasound in medicine.