A Personal Vignette From the ’60s and ’70s

In the mid to late 1960s, neurologic sonography at the Neurological Institute at Columbia Presbyterian Medical Center was being performed by Lewis B. Grossman, MD, and Georgina Wodraska within the Neuroradiology section. I had developed a friendship with Dr Grossman in part due to a similarity in our family medical histories of early demise due to coronary artery disease. We had discussed this one evening and the following morning Dr Grossman did not show up for work and had died of a heart attack.

Two other life-changing events happened later that day. First, Georgina Wodraska informed me that I was to be the new head of Neurologic Sonography, much to my astonishment and with significant doubt as my exposure to sonography was extremely limited and I had significant doubt regarding its capabilities beyond that of detecting midline displacements of the brain. Second, that afternoon I started on a physical activity regimen that progressed over time from walking to long distance running (and now in my 80s back to walking).

20170521_191539

Dr Tenner and his daughter, Sallye,
wrapped in mylar while waiting out a flash storm
in a Utah canyon alcove in May 2017.
Sallye, ARDMSRVT, is a sonographer at
Bay Pines Veterans Health Center in St. Petersburg, Florida.

In the mid to late ’60s, the neuroradiologists’ armamentarium consisted of an x-ray tube for radiographs and a needle. The needle was placed directly into an artery (carotid, vertebral, brachial) or into the subarachnoid space to perform arteriography or pneumoencephalography, respectively. To better understand the source of brain echo reflections, ultrasound using a 1.5-MHz transducer using the thin squamosa of the temporal bone as a window was done while vigorously flushing the carotid needle with a bolus of normal saline, which caused an amplification of the echo reflections within the intracerebral arterial vasculature. We also realized that lesions within the brain that were within the field of view of insonation may also be seen. Although the acoustic impedance of normal brain tissue and brain tumors have little difference ex vivo, there are significant differences in vivo due to 1) the basic angioarchitecture of the tumor, which is distended in vivo and collapsed ex vivo, and 2) surrounding brain edema and areas of liquefaction necrosis and cyst formation within the tumor. Hydrocephalus, arterio-venous malformations, giant aneurysms, intra and extra axial tumors, and some congenital malformations were also detectable.

A mode neurosonography is heavily operator-dependent and required an in-depth knowledge of neuroanatomy and neuropathology. Training a sonographer required a dedicated teacher and a highly motivated and dedicated student.

In 1971 I headed the section of Neuroradiology at SUNY Downstate Medical Center where a sonography school was formed and we were able to attract a student, Larry Waldroup, who had a keen interest in neurosonography. He subsequently took a position with Barry Goldberg, MD, and had a most productive and distinguished career.

Our experience with neurosonography resulted in the publication of a textbook “Diagnostic Ultrasound in Neurology” in 1975. This was also the time that computer tomography was becoming widely available. Needless to say, the timing of the publication and the introduction of computed tomography, a mainstay of diagnostic radiology, did not bode well for the sales of the textbook. Although, the Preface of the textbook states “in recent years there has been striking progress in the scope and pace of ultrasonic examinations and methodology,” which is still true today. Ultrasound of the brain has now also found a mainstay nitch in neonatal, intraoperative neurosonography, and transcranial Doppler.

Do you have any stories to tell of the evolution of ultrasound? Who are your mentors? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Dr Michael Tenner is a Professor of Radiology and Neurosurgery and Professor and Director of Neuroradiology at New York Medical College in Valhalla, New York.